• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Testing-utilities
    • Math
      • Arithmetic
        • Lispfloat
        • Arithmetic-1
        • Number-theory
          • Tonelli-shanks-modular-sqrt-algorithm
            • Tonelli-shanks-algorithm-is-correct
            • Tonelli-shanks-even-sqrt
            • Tonelli-shanks-lesser-sqrt
            • Tonelli-shanks-greater-sqrt
            • Tonelli-shanks-odd-sqrt
            • Tonelli-shanks-sqrt
            • Tonelli-shanks-either-sqrt
            • Tonelli-shanks-supportive-functions
              • Repeated-square
                • Q*2^s
            • Defprime
            • Defprime-alias
            • Prime
            • Dm::primep
            • Has-square-root?
            • Prime-fix
            • Secp256k1-group-prime
            • Secp256k1-field-prime
            • Jubjub-subgroup-prime
            • Edwards-bls12-subgroup-prime
            • Bn-254-group-prime
            • Bls12-381-scalar-field-prime
            • Baby-jubjub-subgroup-prime
            • Goldilocks-prime
          • Proof-by-arith
          • Arith-equivs
          • Number-theory
          • Arithmetic-3
          • Arithmetic-2
          • Arithmetic-light
          • Arithmetic-5
        • Bit-vectors
        • Algebra
    • Tonelli-shanks-supportive-functions

    Repeated-square

    Signature
    (repeated-square base n p) → retval
    Arguments
    base — Guard (natp base).
    n — Guard (natp n).
    p — Guard (natp p).
    Returns
    retval — Type (natp retval).

    Definitions and Theorems

    Function: repeated-square

    (defun repeated-square (base n p)
           (declare (xargs :guard (and (natp base) (natp n) (natp p))))
           (declare (xargs :guard (and (natp base)
                                       (natp n)
                                       (natp p)
                                       (< 2 p))))
           (let ((acl2::__function__ 'repeated-square))
                (declare (ignorable acl2::__function__))
                (if (or (not (natp base))
                        (not (natp n))
                        (not (natp p))
                        (< p 3))
                    0
                    (if (zp n)
                        base
                        (repeated-square (mod (* base base) p)
                                         (- n 1)
                                         p)))))

    Theorem: natp-of-repeated-square

    (defthm natp-of-repeated-square
            (b* ((retval (repeated-square base n p)))
                (natp retval))
            :rule-classes :rewrite)