• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
      • 100-theorems
      • Arithmetic
        • Lispfloat
        • Arithmetic-1
        • Number-theory
          • Tonelli-shanks-modular-sqrt-algorithm
            • Tonelli-shanks-algorithm-is-correct
            • Tonelli-shanks-even-sqrt
            • Tonelli-shanks-odd-sqrt
            • Tonelli-shanks-lesser-sqrt
            • Tonelli-shanks-greater-sqrt
              • Tonelli-shanks-sqrt
              • Tonelli-shanks-either-sqrt
              • Tonelli-shanks-supportive-functions
            • Defprime
            • Defprime-alias
            • Dm::primep
            • Prime
            • Has-square-root?
            • Prime-fix
            • Secp256k1-group-prime
            • Secp256k1-field-prime
            • Jubjub-subgroup-prime
            • Edwards-bls12-subgroup-prime
            • Bn-254-group-prime
            • Bls12-381-scalar-field-prime
            • Baby-jubjub-subgroup-prime
            • Goldilocks-prime
          • Proof-by-arith
          • Arith-equivs
          • Include-an-arithmetic-book
          • Number-theory
          • Arithmetic-3
          • Arithmetic-2
          • Arithmetic-light
          • Arithmetic-5
        • Bit-vectors
        • Algebra
      • Testing-utilities
    • Tonelli-shanks-modular-sqrt-algorithm

    Tonelli-shanks-greater-sqrt

    Tonelli-Shanks modular square root. Finds the greater square root.

    Signature
    (tonelli-shanks-greater-sqrt n p z) → sqrt
    Arguments
    n — Guard (natp n).
    p — Guard (natp p).
    z — Guard (natp z).
    Returns
    sqrt — Type (natp sqrt), given the guard.
    Finds the greater square root of the two square roots of n modulo p if a square root exists, otherwise returns 0. p must be an odd prime. z is a quadratic nonresidue in p.

    Definitions and Theorems

    Function: tonelli-shanks-greater-sqrt

    (defun tonelli-shanks-greater-sqrt (n p z)
      (declare (xargs :guard (and (natp n) (natp p) (natp z))))
      (declare (xargs :guard (and (> p 2)
                                  (< z p)
                                  (primep p)
                                  (< n p)
                                  (not (has-square-root? z p)))))
      (let ((acl2::__function__ 'tonelli-shanks-greater-sqrt))
        (declare (ignorable acl2::__function__))
        (let ((sqrt (tonelli-shanks-sqrt-aux n p z)))
          (if (> sqrt (/ p 2))
              sqrt
            (mod (- sqrt) p)))))

    Theorem: natp-of-tonelli-shanks-greater-sqrt

    (defthm natp-of-tonelli-shanks-greater-sqrt
      (implies (and (natp n)
                    (natp p)
                    (natp z)
                    (< '2 p)
                    (< z p)
                    (primep p)
                    (< n p)
                    (not (has-square-root? z p)))
               (b* ((sqrt (tonelli-shanks-greater-sqrt n p z)))
                 (natp sqrt)))
      :rule-classes :rewrite)