• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
        • Sat-solver-options
        • Config-p
        • Logical-story
        • Dimacs
        • Gather-benchmarks
        • Cnf
          • Litp
            • Lit-negate-cond
            • Lit-negate
            • Make-lit
            • Lit-equiv
            • Lit->var
            • Lit->neg
            • Maybe-litp
            • Lit-list
              • Lit-list-fix
              • Lit-listp
              • Lit-list-equiv
              • Lit-fix
              • Lit-list-list
            • Varp
            • Env$
            • Eval-formula
            • Max-index-formula
            • Max-index-clause
            • Formula-indices
            • Clause-indices
          • Satlink-extra-hook
          • Sat
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Lit-list

    Lit-list-equiv

    Basic equivalence relation for lit-list structures.

    Definitions and Theorems

    Function: lit-list-equiv$inline

    (defun lit-list-equiv$inline (acl2::x acl2::y)
           (declare (xargs :guard (and (lit-listp acl2::x)
                                       (lit-listp acl2::y))))
           (equal (lit-list-fix acl2::x)
                  (lit-list-fix acl2::y)))

    Theorem: lit-list-equiv-is-an-equivalence

    (defthm lit-list-equiv-is-an-equivalence
            (and (booleanp (lit-list-equiv x y))
                 (lit-list-equiv x x)
                 (implies (lit-list-equiv x y)
                          (lit-list-equiv y x))
                 (implies (and (lit-list-equiv x y)
                               (lit-list-equiv y z))
                          (lit-list-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: lit-list-equiv-implies-equal-lit-list-fix-1

    (defthm lit-list-equiv-implies-equal-lit-list-fix-1
            (implies (lit-list-equiv acl2::x x-equiv)
                     (equal (lit-list-fix acl2::x)
                            (lit-list-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: lit-list-fix-under-lit-list-equiv

    (defthm lit-list-fix-under-lit-list-equiv
            (lit-list-equiv (lit-list-fix acl2::x)
                            acl2::x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-lit-list-fix-1-forward-to-lit-list-equiv

    (defthm equal-of-lit-list-fix-1-forward-to-lit-list-equiv
            (implies (equal (lit-list-fix acl2::x) acl2::y)
                     (lit-list-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-lit-list-fix-2-forward-to-lit-list-equiv

    (defthm equal-of-lit-list-fix-2-forward-to-lit-list-equiv
            (implies (equal acl2::x (lit-list-fix acl2::y))
                     (lit-list-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: lit-list-equiv-of-lit-list-fix-1-forward

    (defthm lit-list-equiv-of-lit-list-fix-1-forward
            (implies (lit-list-equiv (lit-list-fix acl2::x)
                                     acl2::y)
                     (lit-list-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)

    Theorem: lit-list-equiv-of-lit-list-fix-2-forward

    (defthm lit-list-equiv-of-lit-list-fix-2-forward
            (implies (lit-list-equiv acl2::x (lit-list-fix acl2::y))
                     (lit-list-equiv acl2::x acl2::y))
            :rule-classes :forward-chaining)