• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
        • Sat-solver-options
        • Config-p
        • Logical-story
        • Dimacs
        • Gather-benchmarks
        • Cnf
          • Litp
            • Lit-negate-cond
            • Lit-negate
            • Make-lit
            • Lit-equiv
            • Lit->var
            • Lit->neg
            • Maybe-litp
            • Lit-list
            • Lit-fix
            • Lit-list-list
              • Lit-list-list-fix
              • Lit-list-list-equiv
              • Lit-list-listp
                • Lit-list-listp-basics
            • Varp
            • Env$
            • Eval-formula
            • Max-index-formula
            • Max-index-clause
            • Formula-indices
            • Clause-indices
          • Satlink-extra-hook
          • Sat
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Lit-list-listp

    Lit-list-listp-basics

    Basic theorems about lit-list-listp, generated by deflist.

    Definitions and Theorems

    Theorem: lit-list-listp-of-cons

    (defthm lit-list-listp-of-cons
            (equal (lit-list-listp (cons acl2::a acl2::x))
                   (and (lit-listp acl2::a)
                        (lit-list-listp acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: lit-list-listp-of-cdr-when-lit-list-listp

    (defthm lit-list-listp-of-cdr-when-lit-list-listp
            (implies (lit-list-listp (double-rewrite acl2::x))
                     (lit-list-listp (cdr acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: lit-list-listp-when-not-consp

    (defthm lit-list-listp-when-not-consp
            (implies (not (consp acl2::x))
                     (equal (lit-list-listp acl2::x)
                            (not acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: lit-listp-of-car-when-lit-list-listp

    (defthm lit-listp-of-car-when-lit-list-listp
            (implies (lit-list-listp acl2::x)
                     (iff (lit-listp (car acl2::x))
                          (or (consp acl2::x) (lit-listp nil))))
            :rule-classes ((:rewrite)))

    Theorem: true-listp-when-lit-list-listp-compound-recognizer

    (defthm true-listp-when-lit-list-listp-compound-recognizer
            (implies (lit-list-listp acl2::x)
                     (true-listp acl2::x))
            :rule-classes :compound-recognizer)