• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Error-checking
        • Apt
        • Abnf
        • Fty-extensions
          • Defbyte
          • Defresult
          • Defsubtype
          • Pos-list
          • Defflatsum
          • Deflist-of-len
          • Defbytelist
          • Defset
          • Specific-types
          • Defbyte-standard-instances
          • Deffixtype-alias
          • Defomap
          • Defbytelist-standard-instances
          • Defunit
          • Byte-list
          • Byte
          • Nibble
          • Pos-option
          • Nat-option
          • Byte-list20
          • String-option
          • Byte-list32
          • Byte-list64
          • Pseudo-event-form
          • Character-list
          • Natoption/natoptionlist
          • Nati
          • Maybe-string
          • Nat/natlist
          • Nibble-list
          • Natoption/natoptionlist-result
          • Set
            • Nat/natlist-result
            • Nat-option-list-result
            • String-result
            • String-list-result
            • Nat-result
            • Nat-option-result
            • Nat-list-result
            • Maybe-string-result
            • Integer-result
            • Character-result
            • Character-list-result
            • Boolean-result
            • Map
            • Bag
            • Pseudo-event-form-list
            • Nat-option-list
            • Nat-set
            • Bit-list
          • Isar
          • Kestrel-utilities
          • Prime-field-constraint-systems
          • Soft
          • Bv
          • Imp-language
          • Event-macros
          • Bitcoin
          • Ethereum
          • Yul
          • Zcash
          • ACL2-programming-language
          • Prime-fields
          • Java
          • C
          • Syntheto
          • Number-theory
          • Cryptography
          • Lists-light
          • File-io-light
          • Json
          • Built-ins
          • Solidity
          • Axe
          • Std-extensions
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Execloader
        • Axe
      • Testing-utilities
      • Math
    • Fty-extensions
    • Specific-types
    • Std/osets

    Set

    A fixtype of osets.

    The fixing function used here is sfix.

    The name sequiv of the equivalence relation introduced here is ``structurally similar'' to the name sfix of the fixing function.

    Definitions and Theorems

    Function: sequiv$inline

    (defun sequiv$inline (x y)
           (declare (xargs :guard (and (setp x) (setp y))))
           (equal (sfix x) (sfix y)))

    Theorem: sequiv-is-an-equivalence

    (defthm sequiv-is-an-equivalence
            (and (booleanp (sequiv x y))
                 (sequiv x x)
                 (implies (sequiv x y) (sequiv y x))
                 (implies (and (sequiv x y) (sequiv y z))
                          (sequiv x z)))
            :rule-classes (:equivalence))

    Theorem: sequiv-implies-equal-sfix-1

    (defthm sequiv-implies-equal-sfix-1
            (implies (sequiv x x-equiv)
                     (equal (sfix x) (sfix x-equiv)))
            :rule-classes (:congruence))

    Theorem: sfix-under-sequiv

    (defthm sfix-under-sequiv (sequiv (sfix x) x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-sfix-1-forward-to-sequiv

    (defthm equal-of-sfix-1-forward-to-sequiv
            (implies (equal (sfix x) y)
                     (sequiv x y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-sfix-2-forward-to-sequiv

    (defthm equal-of-sfix-2-forward-to-sequiv
            (implies (equal x (sfix y))
                     (sequiv x y))
            :rule-classes :forward-chaining)

    Theorem: sequiv-of-sfix-1-forward

    (defthm sequiv-of-sfix-1-forward
            (implies (sequiv (sfix x) y)
                     (sequiv x y))
            :rule-classes :forward-chaining)

    Theorem: sequiv-of-sfix-2-forward

    (defthm sequiv-of-sfix-2-forward
            (implies (sequiv x (sfix y))
                     (sequiv x y))
            :rule-classes :forward-chaining)