• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-fixpoint-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Moddb
        • Svex-compilation
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
          • Svar-add-namespace
          • Path
          • Design
            • Design-fix
            • Design-equiv
            • Make-design
            • Design-p
              • Design->modalist
              • Change-design
              • Design->top
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Constraintlist-addr-p
            • Svex-alist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Modname
            • Assigns-addr-p
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-list-measure
            • Attributes
            • Modhier-measure
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Vwsim
        • Fgl
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Design

    Design-p

    Recognizer for design structures.

    Signature
    (design-p x) → *

    Definitions and Theorems

    Function: design-p

    (defun design-p (x)
      (declare (xargs :guard t))
      (let ((__function__ 'design-p))
        (declare (ignorable __function__))
        (and (mbe :logic (and (alistp x)
                              (equal (strip-cars x) '(modalist top)))
                  :exec (fty::alist-with-carsp x '(modalist top)))
             (b* ((modalist (cdr (std::da-nth 0 x)))
                  (top (cdr (std::da-nth 1 x))))
               (and (modalist-p modalist)
                    (modname-p top))))))

    Theorem: consp-when-design-p

    (defthm consp-when-design-p
      (implies (design-p x) (consp x))
      :rule-classes :compound-recognizer)