• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-fixpoint-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Moddb
        • Svex-compilation
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
          • Svar-add-namespace
          • Path
          • Design
          • Modinst
          • Lhs-add-namespace
          • Modalist
          • Path-add-namespace
          • Modname->submodnames
          • Name
          • Svex-alist-addr-p
          • Constraintlist-addr-p
          • Svar-map-addr-p
          • Lhspairs-addr-p
          • Assigns-addr-p
          • Modname
          • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-measure
            • Modhier-list-measure
            • Attributes
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Vwsim
        • Fgl
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Svmods

    Lhs-addr-p

    Signature
    (lhs-addr-p x) → *
    Arguments
    x — Guard (lhs-p x).

    Definitions and Theorems

    Function: lhs-addr-p

    (defun
        lhs-addr-p (x)
        (declare (xargs :guard (lhs-p x)))
        (let ((__function__ 'lhs-addr-p))
             (declare (ignorable __function__))
             (mbe :logic (svarlist-addr-p (lhs-vars x))
                  :exec (if (atom x)
                            t
                            (and (lhatom-addr-p (lhrange->atom (car x)))
                                 (lhs-addr-p (cdr x)))))))

    Theorem: lhs-addr-p-of-lhs-fix-x

    (defthm lhs-addr-p-of-lhs-fix-x
            (equal (lhs-addr-p (lhs-fix x))
                   (lhs-addr-p x)))

    Theorem: lhs-addr-p-lhs-equiv-congruence-on-x

    (defthm lhs-addr-p-lhs-equiv-congruence-on-x
            (implies (lhs-equiv x x-equiv)
                     (equal (lhs-addr-p x)
                            (lhs-addr-p x-equiv)))
            :rule-classes :congruence)