• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-fixpoint-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Moddb
        • Svex-compilation
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
            • Lhs.lisp
            • Lhs-p
            • Lhs-fix
            • Lhrange
            • Lhs-eval-zero
            • Lhs-equiv
              • Lhs-eval
              • Lhs->svex
            • Svar-add-namespace
            • Path
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Svex-alist-addr-p
            • Constraintlist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Assigns-addr-p
            • Modname
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-measure
            • Modhier-list-measure
            • Attributes
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Lhs

    Lhs-equiv

    Basic equivalence relation for lhs structures.

    Definitions and Theorems

    Function: lhs-equiv$inline

    (defun lhs-equiv$inline (x y)
           (declare (xargs :guard (and (lhs-p x) (lhs-p y))))
           (equal (lhs-fix x) (lhs-fix y)))

    Theorem: lhs-equiv-is-an-equivalence

    (defthm lhs-equiv-is-an-equivalence
            (and (booleanp (lhs-equiv x y))
                 (lhs-equiv x x)
                 (implies (lhs-equiv x y)
                          (lhs-equiv y x))
                 (implies (and (lhs-equiv x y) (lhs-equiv y z))
                          (lhs-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: lhs-equiv-implies-equal-lhs-fix-1

    (defthm lhs-equiv-implies-equal-lhs-fix-1
            (implies (lhs-equiv x x-equiv)
                     (equal (lhs-fix x) (lhs-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: lhs-fix-under-lhs-equiv

    (defthm lhs-fix-under-lhs-equiv
            (lhs-equiv (lhs-fix x) x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-lhs-fix-1-forward-to-lhs-equiv

    (defthm equal-of-lhs-fix-1-forward-to-lhs-equiv
            (implies (equal (lhs-fix x) y)
                     (lhs-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-lhs-fix-2-forward-to-lhs-equiv

    (defthm equal-of-lhs-fix-2-forward-to-lhs-equiv
            (implies (equal x (lhs-fix y))
                     (lhs-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: lhs-equiv-of-lhs-fix-1-forward

    (defthm lhs-equiv-of-lhs-fix-1-forward
            (implies (lhs-equiv (lhs-fix x) y)
                     (lhs-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: lhs-equiv-of-lhs-fix-2-forward

    (defthm lhs-equiv-of-lhs-fix-2-forward
            (implies (lhs-equiv x (lhs-fix y))
                     (lhs-equiv x y))
            :rule-classes :forward-chaining)