• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-fixpoint-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Moddb
        • Svex-compilation
        • Svmods
          • Address
          • Wire
          • Module
          • Lhs
            • Lhs.lisp
              • Lhs-vars-normorderedp
              • Lhs-norm
              • Lhatom-normorderedp
              • Lhs-normp
                • Svex-lhsrewrite-aux
                • Lhs-concat
                • Lhrange-combine
                • Lhs-check-masks
                • Svexarr-vars-aux
                • Assigns-check-masks
                • Svex->lhs-range
                • Svarlist-boundedp-badguy
                • Svex-lhs-preproc-blkrev
                • Driverlist-rest-after-strength
                • Lhs-rsh
                • Lhs-cons
                • Lhs-bitproj
                • Aliases-normorderedp
                • Svarlist-boundedp
                • Lhs-vars
                • Assigns->netassigns-aux
                • Netassigns->resolves
                • Make-simple-lhs
                • Lhs-first-aux
                • Lhrange-bitproj
                • Driver
                • Svex-override
                • Lhssvex-range-p
                • Lhs-rest-aux
                • Lhs-rest
                • Lhs-override
                • Lhrange-combinable-dec
                • Lhatom
                • Driverlist-values-of-strength
                • Aliases-normorderedp-aux
                • Svexarr-vars
                • Netassigns-vars
                • Lhsarr-to-svexarr
                • Svexarr-vars-witness-aux
                • Svex-lhsrewrite
                • Svar-boundedp
                • Lhbit
                • Lhs-decomp-aux
                • Svex->lhs-bound
                • Aliases-vars-aux
                • Svexarr-vars-witness
                • Svexarr
                • Svar-set-index
                • Lhsarr
                • Lhs-override-vars
                • Lhatom-bitproj
                • Lhrange-nextbit
                • Lhatom-eval-zero
                • Assigns->netassigns
                • Lhrange-combinable
                • Driverlist->svex
                • Lhs->svex-zero
                • Driverlist-vars
                • Svexlist-resolve
                • Lhssvex-bounded-p
                • Lhslist-vars
                • Lhs-overridelist-vars
                • Lhs-overridelist-keys
                • Lhs-decomp
                • Lhbit-eval
                • Assigns-vars
                • Svex-int
                • Lhatom-vars
                • Aliases-vars
                • Svar-map-vars
                • Netassigns->resolves-nrev
                • Lhssvex-unbounded-p
                • Lhspairs-vars
                • Lhs-width
                • Lhs-first
                • Svar-index
                • Assigns
                • Svar-indexedp
                • Netassigns
                • Lhspairs
                • Svex-overridelist
                • Lhslist
                • Lhs-overridelist
                • Driverlist
                • Svex-lhs-preproc
                • Svexarr-fix
                • Lhsarr-fix
              • Lhs-p
              • Lhs-fix
              • Lhrange
              • Lhs-eval-zero
              • Lhs-equiv
              • Lhs-eval
              • Lhs->svex
            • Svar-add-namespace
            • Path
            • Design
            • Modinst
            • Lhs-add-namespace
            • Modalist
            • Path-add-namespace
            • Modname->submodnames
            • Name
            • Svex-alist-addr-p
            • Constraintlist-addr-p
            • Svar-map-addr-p
            • Lhspairs-addr-p
            • Assigns-addr-p
            • Modname
            • Lhs-addr-p
            • Lhatom-addr-p
            • Modhier-measure
            • Modhier-list-measure
            • Attributes
            • Modhier-list-measure-aux
            • Modhier-loopfreelist-p
            • Modhier-loopfree-p
          • Svstmt
          • Sv-tutorial
          • Expressions
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Lhs.lisp

    Lhs-normp

    Signature
    (lhs-normp x) → *
    Arguments
    x — Guard (lhs-p x).

    Definitions and Theorems

    Function: lhs-normp

    (defun lhs-normp (x)
           (declare (xargs :guard (lhs-p x)))
           (let ((__function__ 'lhs-normp))
                (declare (ignorable __function__))
                (equal x (lhs-norm x))))

    Function: lhs-norm-equiv

    (defun lhs-norm-equiv (x y)
           (declare (xargs :non-executable t))
           (prog2$ (acl2::throw-nonexec-error 'lhs-norm-equiv
                                              (list x y))
                   (equal (lhs-norm x) (lhs-norm y))))

    Theorem: lhs-norm-equiv-is-an-equivalence

    (defthm lhs-norm-equiv-is-an-equivalence
            (and (booleanp (lhs-norm-equiv x y))
                 (lhs-norm-equiv x x)
                 (implies (lhs-norm-equiv x y)
                          (lhs-norm-equiv y x))
                 (implies (and (lhs-norm-equiv x y)
                               (lhs-norm-equiv y z))
                          (lhs-norm-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: lhs-norm-equiv-implies-equal-lhs-norm-1

    (defthm lhs-norm-equiv-implies-equal-lhs-norm-1
            (implies (lhs-norm-equiv x x-equiv)
                     (equal (lhs-norm x) (lhs-norm x-equiv)))
            :rule-classes (:congruence))

    Theorem: lhs-norm-under-lhs-norm-equiv

    (defthm lhs-norm-under-lhs-norm-equiv
            (lhs-norm-equiv (lhs-norm x) x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-lhs-norm-1-forward-to-lhs-norm-equiv

    (defthm equal-of-lhs-norm-1-forward-to-lhs-norm-equiv
            (implies (equal (lhs-norm x) y)
                     (lhs-norm-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: equal-of-lhs-norm-2-forward-to-lhs-norm-equiv

    (defthm equal-of-lhs-norm-2-forward-to-lhs-norm-equiv
            (implies (equal x (lhs-norm y))
                     (lhs-norm-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: lhs-norm-equiv-of-lhs-norm-1-forward

    (defthm lhs-norm-equiv-of-lhs-norm-1-forward
            (implies (lhs-norm-equiv (lhs-norm x) y)
                     (lhs-norm-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: lhs-norm-equiv-of-lhs-norm-2-forward

    (defthm lhs-norm-equiv-of-lhs-norm-2-forward
            (implies (lhs-norm-equiv x (lhs-norm y))
                     (lhs-norm-equiv x y))
            :rule-classes :forward-chaining)

    Theorem: lhs-equiv-refines-lhs-norm-equiv

    (defthm lhs-equiv-refines-lhs-norm-equiv
            (implies (lhs-equiv x y)
                     (lhs-norm-equiv x y))
            :rule-classes (:refinement))

    Theorem: lhs-cons-of-lhs-norm-y-under-lhs-norm-equiv

    (defthm lhs-cons-of-lhs-norm-y-under-lhs-norm-equiv
            (lhs-norm-equiv (lhs-cons x (lhs-norm y))
                            (lhs-cons x y)))

    Theorem: lhs-cons-lhs-norm-equiv-congruence-on-y-under-lhs-norm-equiv

    (defthm lhs-cons-lhs-norm-equiv-congruence-on-y-under-lhs-norm-equiv
            (implies (lhs-norm-equiv y y-equiv)
                     (lhs-norm-equiv (lhs-cons x y)
                                     (lhs-cons x y-equiv)))
            :rule-classes :congruence)

    Theorem: lhs-eval-of-lhs-norm-x

    (defthm lhs-eval-of-lhs-norm-x
            (equal (lhs-eval (lhs-norm x) env)
                   (lhs-eval x env)))

    Theorem: lhs-eval-lhs-norm-equiv-congruence-on-x

    (defthm lhs-eval-lhs-norm-equiv-congruence-on-x
            (implies (lhs-norm-equiv x x-equiv)
                     (equal (lhs-eval x env)
                            (lhs-eval x-equiv env)))
            :rule-classes :congruence)

    Theorem: lhs-eval-zero-of-lhs-norm-x

    (defthm lhs-eval-zero-of-lhs-norm-x
            (equal (lhs-eval-zero (lhs-norm x) env)
                   (lhs-eval-zero x env)))

    Theorem: lhs-eval-zero-lhs-norm-equiv-congruence-on-x

    (defthm lhs-eval-zero-lhs-norm-equiv-congruence-on-x
            (implies (lhs-norm-equiv x x-equiv)
                     (equal (lhs-eval-zero x env)
                            (lhs-eval-zero x-equiv env)))
            :rule-classes :congruence)

    Theorem: lhs-norm-cdr-lhs-norm

    (defthm lhs-norm-cdr-lhs-norm
            (implies (lhs-normp x)
                     (lhs-normp (cdr x))))

    Theorem: lhs-normp-of-lhs-norm

    (defthm lhs-normp-of-lhs-norm
            (lhs-normp (lhs-norm x)))

    Theorem: lhs-normp-of-lhs-cons

    (defthm lhs-normp-of-lhs-cons
            (implies (lhs-normp x)
                     (lhs-normp (lhs-cons a x))))

    Theorem: lhs-norm-when-lhs-normp

    (defthm lhs-norm-when-lhs-normp
            (implies (lhs-normp x)
                     (equal (lhs-norm x) x)))

    Theorem: lhs-normp-of-lhs-fix

    (defthm lhs-normp-of-lhs-fix
            (implies (lhs-normp x)
                     (lhs-normp (lhs-fix x))))