Basic equivalence relation for netassigns structures.
Function:
(defun netassigns-equiv$inline (x y) (declare (xargs :guard (and (netassigns-p x) (netassigns-p y)))) (equal (netassigns-fix x) (netassigns-fix y)))
Theorem:
(defthm netassigns-equiv-is-an-equivalence (and (booleanp (netassigns-equiv x y)) (netassigns-equiv x x) (implies (netassigns-equiv x y) (netassigns-equiv y x)) (implies (and (netassigns-equiv x y) (netassigns-equiv y z)) (netassigns-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm netassigns-equiv-implies-equal-netassigns-fix-1 (implies (netassigns-equiv x x-equiv) (equal (netassigns-fix x) (netassigns-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm netassigns-fix-under-netassigns-equiv (netassigns-equiv (netassigns-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-netassigns-fix-1-forward-to-netassigns-equiv (implies (equal (netassigns-fix x) y) (netassigns-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-netassigns-fix-2-forward-to-netassigns-equiv (implies (equal x (netassigns-fix y)) (netassigns-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm netassigns-equiv-of-netassigns-fix-1-forward (implies (netassigns-equiv (netassigns-fix x) y) (netassigns-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm netassigns-equiv-of-netassigns-fix-2-forward (implies (netassigns-equiv x (netassigns-fix y)) (netassigns-equiv x y)) :rule-classes :forward-chaining)