(netassigns-fix x) is an fty alist fixing function that follows the fix-keys strategy.
(netassigns-fix x) → fty::newx
Note that in the execution this is just an inline identity function.
Function:
(defun netassigns-fix$inline (x) (declare (xargs :guard (netassigns-p x))) (let ((__function__ 'netassigns-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) x (if (consp (car x)) (cons (cons (svar-fix (caar x)) (driverlist-fix (cdar x))) (netassigns-fix (cdr x))) (netassigns-fix (cdr x)))) :exec x)))
Theorem:
(defthm netassigns-p-of-netassigns-fix (b* ((fty::newx (netassigns-fix$inline x))) (netassigns-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm netassigns-fix-when-netassigns-p (implies (netassigns-p x) (equal (netassigns-fix x) x)))
Function:
(defun netassigns-equiv$inline (x y) (declare (xargs :guard (and (netassigns-p x) (netassigns-p y)))) (equal (netassigns-fix x) (netassigns-fix y)))
Theorem:
(defthm netassigns-equiv-is-an-equivalence (and (booleanp (netassigns-equiv x y)) (netassigns-equiv x x) (implies (netassigns-equiv x y) (netassigns-equiv y x)) (implies (and (netassigns-equiv x y) (netassigns-equiv y z)) (netassigns-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm netassigns-equiv-implies-equal-netassigns-fix-1 (implies (netassigns-equiv x x-equiv) (equal (netassigns-fix x) (netassigns-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm netassigns-fix-under-netassigns-equiv (netassigns-equiv (netassigns-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-netassigns-fix-1-forward-to-netassigns-equiv (implies (equal (netassigns-fix x) y) (netassigns-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-netassigns-fix-2-forward-to-netassigns-equiv (implies (equal x (netassigns-fix y)) (netassigns-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm netassigns-equiv-of-netassigns-fix-1-forward (implies (netassigns-equiv (netassigns-fix x) y) (netassigns-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm netassigns-equiv-of-netassigns-fix-2-forward (implies (netassigns-equiv x (netassigns-fix y)) (netassigns-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-svar-fix-k-under-netassigns-equiv (netassigns-equiv (cons (cons (svar-fix acl2::k) acl2::v) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-svar-equiv-congruence-on-k-under-netassigns-equiv (implies (svar-equiv acl2::k k-equiv) (netassigns-equiv (cons (cons acl2::k acl2::v) x) (cons (cons k-equiv acl2::v) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-driverlist-fix-v-under-netassigns-equiv (netassigns-equiv (cons (cons acl2::k (driverlist-fix acl2::v)) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-driverlist-equiv-congruence-on-v-under-netassigns-equiv (implies (driverlist-equiv acl2::v v-equiv) (netassigns-equiv (cons (cons acl2::k acl2::v) x) (cons (cons acl2::k v-equiv) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-netassigns-fix-y-under-netassigns-equiv (netassigns-equiv (cons x (netassigns-fix y)) (cons x y)))
Theorem:
(defthm cons-netassigns-equiv-congruence-on-y-under-netassigns-equiv (implies (netassigns-equiv y y-equiv) (netassigns-equiv (cons x y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm netassigns-fix-of-acons (equal (netassigns-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (svar-fix acl2::a) (driverlist-fix acl2::b)) (netassigns-fix x))))
Theorem:
(defthm netassigns-fix-of-append (equal (netassigns-fix (append std::a std::b)) (append (netassigns-fix std::a) (netassigns-fix std::b))))
Theorem:
(defthm consp-car-of-netassigns-fix (equal (consp (car (netassigns-fix x))) (consp (netassigns-fix x))))