• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-fixpoint-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Moddb
        • Svex-compilation
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
            • Svar
            • Least-fixpoint
            • Svex-p
            • Svex-select
            • Svex-alist
              • Svex-alist-p
                • Svex-alist-fix
                • Svex-alist-vars
                • Svex-alist-eval
                • Svex-lookup
                • Svex-fastacons
                • Svex-alist-vals
                • Svex-acons
                • Svex-alist-keys
                • Svex-alist-equiv
                • Svex-fastlookup
              • Svex-equiv
              • Svexlist
              • Svex-call
              • Fnsym
              • Svex-quote
              • Svex-var
              • Svcall-rw
              • Svcall
              • Svex-kind
              • Svcall*
              • Svex-fix
              • Svex-count
              • Svex-1z
              • Svex-1x
              • Svex-z
              • Svex-x
            • Bit-blasting
            • Functions
            • 4vmask
            • Why-infinite-width
            • Svex-vars
            • Evaluation
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Svex-alist

    Svex-alist-p

    Recognizer for svex-alist.

    Signature
    (svex-alist-p x) → *

    Definitions and Theorems

    Function: svex-alist-p

    (defun svex-alist-p (x)
           (declare (xargs :guard t))
           (let ((__function__ 'svex-alist-p))
                (declare (ignorable __function__))
                (if (atom x)
                    (eq x nil)
                    (and (consp (car x))
                         (svar-p (caar x))
                         (svex-p (cdar x))
                         (svex-alist-p (cdr x))))))

    Theorem: svex-alist-p-of-union-equal

    (defthm svex-alist-p-of-union-equal
            (equal (svex-alist-p (union-equal x y))
                   (and (svex-alist-p (list-fix x))
                        (svex-alist-p (double-rewrite y))))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-intersection-equal-2

    (defthm svex-alist-p-of-intersection-equal-2
            (implies (svex-alist-p (double-rewrite y))
                     (svex-alist-p (intersection-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-intersection-equal-1

    (defthm svex-alist-p-of-intersection-equal-1
            (implies (svex-alist-p (double-rewrite x))
                     (svex-alist-p (intersection-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-set-difference-equal

    (defthm svex-alist-p-of-set-difference-equal
            (implies (svex-alist-p x)
                     (svex-alist-p (set-difference-equal x y)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-when-subsetp-equal

    (defthm svex-alist-p-when-subsetp-equal
            (and (implies (and (subsetp-equal x y)
                               (svex-alist-p y))
                          (equal (svex-alist-p x) (true-listp x)))
                 (implies (and (svex-alist-p y)
                               (subsetp-equal x y))
                          (equal (svex-alist-p x)
                                 (true-listp x))))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-rcons

    (defthm svex-alist-p-of-rcons
            (iff (svex-alist-p (acl2::rcons acl2::a x))
                 (and (and (consp acl2::a)
                           (svar-p (car acl2::a))
                           (svex-p (cdr acl2::a)))
                      (svex-alist-p (list-fix x))))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-append

    (defthm svex-alist-p-of-append
            (equal (svex-alist-p (append acl2::a acl2::b))
                   (and (svex-alist-p (list-fix acl2::a))
                        (svex-alist-p acl2::b)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-repeat

    (defthm svex-alist-p-of-repeat
            (iff (svex-alist-p (repeat acl2::n x))
                 (or (and (consp x)
                          (svar-p (car x))
                          (svex-p (cdr x)))
                     (zp acl2::n)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-rev

    (defthm svex-alist-p-of-rev
            (equal (svex-alist-p (rev x))
                   (svex-alist-p (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-list-fix

    (defthm svex-alist-p-of-list-fix
            (implies (svex-alist-p x)
                     (svex-alist-p (list-fix x)))
            :rule-classes ((:rewrite)))

    Theorem: true-listp-when-svex-alist-p-compound-recognizer

    (defthm true-listp-when-svex-alist-p-compound-recognizer
            (implies (svex-alist-p x)
                     (true-listp x))
            :rule-classes :compound-recognizer)

    Theorem: svex-alist-p-when-not-consp

    (defthm svex-alist-p-when-not-consp
            (implies (not (consp x))
                     (equal (svex-alist-p x) (not x)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-cdr-when-svex-alist-p

    (defthm svex-alist-p-of-cdr-when-svex-alist-p
            (implies (svex-alist-p (double-rewrite x))
                     (svex-alist-p (cdr x)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-cons

    (defthm svex-alist-p-of-cons
            (equal (svex-alist-p (cons acl2::a x))
                   (and (and (consp acl2::a)
                             (svar-p (car acl2::a))
                             (svex-p (cdr acl2::a)))
                        (svex-alist-p x)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-remove-assoc

    (defthm svex-alist-p-of-remove-assoc
            (implies (svex-alist-p x)
                     (svex-alist-p (remove-assoc-equal acl2::name x)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-put-assoc

    (defthm
       svex-alist-p-of-put-assoc
       (implies
            (and (svex-alist-p x))
            (iff (svex-alist-p (put-assoc-equal acl2::name acl2::val x))
                 (and (svar-p acl2::name)
                      (svex-p acl2::val))))
       :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-fast-alist-clean

    (defthm svex-alist-p-of-fast-alist-clean
            (implies (svex-alist-p x)
                     (svex-alist-p (fast-alist-clean x)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-hons-shrink-alist

    (defthm svex-alist-p-of-hons-shrink-alist
            (implies (and (svex-alist-p x) (svex-alist-p y))
                     (svex-alist-p (hons-shrink-alist x y)))
            :rule-classes ((:rewrite)))

    Theorem: svex-alist-p-of-hons-acons

    (defthm svex-alist-p-of-hons-acons
            (equal (svex-alist-p (hons-acons acl2::a acl2::n x))
                   (and (svar-p acl2::a)
                        (svex-p acl2::n)
                        (svex-alist-p x)))
            :rule-classes ((:rewrite)))

    Theorem: svex-p-of-cdr-of-hons-assoc-equal-when-svex-alist-p

    (defthm svex-p-of-cdr-of-hons-assoc-equal-when-svex-alist-p
            (implies (svex-alist-p x)
                     (iff (svex-p (cdr (hons-assoc-equal acl2::k x)))
                          (or (hons-assoc-equal acl2::k x)
                              (svex-p nil))))
            :rule-classes ((:rewrite)))

    Theorem: alistp-when-svex-alist-p-rewrite

    (defthm alistp-when-svex-alist-p-rewrite
            (implies (svex-alist-p x) (alistp x))
            :rule-classes ((:rewrite)))

    Theorem: alistp-when-svex-alist-p

    (defthm alistp-when-svex-alist-p
            (implies (svex-alist-p x) (alistp x))
            :rule-classes :tau-system)

    Theorem: svex-p-of-cdar-when-svex-alist-p

    (defthm svex-p-of-cdar-when-svex-alist-p
            (implies (svex-alist-p x)
                     (iff (svex-p (cdar x))
                          (or (consp x) (svex-p nil))))
            :rule-classes ((:rewrite)))

    Theorem: svar-p-of-caar-when-svex-alist-p

    (defthm svar-p-of-caar-when-svex-alist-p
            (implies (svex-alist-p x)
                     (iff (svar-p (caar x))
                          (or (consp x) (svar-p nil))))
            :rule-classes ((:rewrite)))