• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
        • Index-permute-shrink
        • Permute-stretch
        • Env-mismatch-aux
        • Permute-shrink
        • Permute-polarity
        • Env-permute-polarity
        • Env-permute-shrink
        • Permute-var-down
        • Swap-vars-aux
        • Env-permute-stretch
        • Swap-vars
        • Permute-var-up
        • Negative-cofactor
        • Truth-perm-rev
        • Index-permute-stretch
        • Env-mismatch
        • Truth-perm
        • Swap-polarity
        • Positive-cofactor
        • Index-perm-rev
        • Env-perm-rev
        • Nth-set-bit-pos
        • Index-swap
        • Env-move-var-down
        • Is-xor-with-var
        • Index-perm
        • Env-swap-vars
        • Var
        • Truth-eval
        • Index-move-down
        • Env-update
        • Env-perm
        • Depends-on-witness
        • Env-swap-polarity
          • Var-repetitions
          • Env-move-var-up
          • Index-move-up
          • Depends-on
          • Truth-norm
          • Index-listp
          • Env-diff-index
          • Env-lookup
          • True
          • False
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Debugging
      • Projects
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Truth

    Env-swap-polarity

    Signature
    (env-swap-polarity n env) → new-env
    Arguments
    n — Guard (natp n).
    env — Guard (natp env).
    Returns
    new-env — Type (natp new-env).

    Definitions and Theorems

    Function: env-swap-polarity

    (defun env-swap-polarity (n env)
           (declare (xargs :guard (and (natp n) (natp env))))
           (let ((__function__ 'env-swap-polarity))
                (declare (ignorable __function__))
                (env-update n (not (env-lookup n env))
                            env)))

    Theorem: natp-of-env-swap-polarity

    (defthm natp-of-env-swap-polarity
            (b* ((new-env (env-swap-polarity n env)))
                (natp new-env))
            :rule-classes :type-prescription)

    Theorem: lookup-in-env-swap-polarity-same

    (defthm lookup-in-env-swap-polarity-same
            (b* ((?new-env (env-swap-polarity n env)))
                (equal (env-lookup n new-env)
                       (not (env-lookup n env)))))

    Theorem: lookup-in-env-swap-polarity-diff

    (defthm lookup-in-env-swap-polarity-diff
            (b* ((?new-env (env-swap-polarity n env)))
                (implies (not (nat-equiv n m))
                         (equal (env-lookup m new-env)
                                (env-lookup m env)))))

    Theorem: lookup-in-env-swap-polarity-split

    (defthm lookup-in-env-swap-polarity-split
            (b* ((?new-env (env-swap-polarity n env)))
                (equal (env-lookup m new-env)
                       (if (nat-equiv n m)
                           (not (env-lookup n env))
                           (env-lookup m env)))))

    Theorem: env-swap-polarity-reverse

    (defthm env-swap-polarity-reverse
            (b* ((?new-env (env-swap-polarity n env)))
                (equal (env-swap-polarity n new-env)
                       (nfix env))))

    Theorem: env-swap-polarity-commute

    (defthm env-swap-polarity-commute
            (b* nil
                (equal (env-swap-polarity n (env-swap-polarity m env))
                       (env-swap-polarity m (env-swap-polarity n env))))
            :rule-classes ((:rewrite :loop-stopper ((n m)))))

    Theorem: env-swap-polarity-of-nfix-n

    (defthm env-swap-polarity-of-nfix-n
            (equal (env-swap-polarity (nfix n) env)
                   (env-swap-polarity n env)))

    Theorem: env-swap-polarity-nat-equiv-congruence-on-n

    (defthm env-swap-polarity-nat-equiv-congruence-on-n
            (implies (nat-equiv n n-equiv)
                     (equal (env-swap-polarity n env)
                            (env-swap-polarity n-equiv env)))
            :rule-classes :congruence)

    Theorem: env-swap-polarity-of-nfix-env

    (defthm env-swap-polarity-of-nfix-env
            (equal (env-swap-polarity n (nfix env))
                   (env-swap-polarity n env)))

    Theorem: env-swap-polarity-nat-equiv-congruence-on-env

    (defthm env-swap-polarity-nat-equiv-congruence-on-env
            (implies (nat-equiv env env-equiv)
                     (equal (env-swap-polarity n env)
                            (env-swap-polarity n env-equiv)))
            :rule-classes :congruence)