• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
        • Symbolic-test-vectors
        • Esim-primitives
        • E-conversion
          • Vl-ealist-p
          • Modinsts-to-eoccs
          • Vl-module-make-esim
          • Exploding-vectors
          • Resolving-multiple-drivers
            • Vl-res-sigma-p
              • Vl-res-rewrite-occs
              • Vl-add-res-modules
              • Vl-make-res-occs
            • Vl-modulelist-make-esims
            • Vl-module-check-e-ok
            • Vl-collect-design-wires
            • Adding-z-drivers
            • Vl-design-to-e
            • Vl-design-to-e-check-ports
            • Vl-design-to-e-main
            • Port-bit-checking
          • Esim-steps
          • Patterns
          • Mod-internal-paths
          • Defmodules
          • Esim-simplify-update-fns
          • Esim-tutorial
          • Esim-vl
        • Vl2014
        • Sv
        • Vwsim
        • Fgl
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Resolving-multiple-drivers

    Vl-res-sigma-p

    An alist that records the fresh wires we introduce for multiply driven wires.

    The basic idea is that if W is a multiply-driven wire, and we are going to rewrite the occurrences so that they drive W_1, W_2, ... instead of W, then this alist should bind

    W --> (W_1 W_2 ...)

    In short, this alist will end up saying which wires need to be resolved together to drive W; see vl-make-res-occs.

    Definitions and Theorems

    Function: vl-res-sigma-p

    (defun vl-res-sigma-p (x)
           (declare (xargs :guard t))
           (if (consp x)
               (and (consp (car x))
                    (vl-emodwire-p (caar x))
                    (vl-emodwirelist-p (cdar x))
                    (vl-res-sigma-p (cdr x)))
               t))

    Theorem: vl-res-sigma-p-of-revappend

    (defthm vl-res-sigma-p-of-revappend
            (equal (vl-res-sigma-p (revappend acl2::x acl2::y))
                   (and (vl-res-sigma-p (list-fix acl2::x))
                        (vl-res-sigma-p acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-remove

    (defthm vl-res-sigma-p-of-remove
            (implies (vl-res-sigma-p acl2::x)
                     (vl-res-sigma-p (remove acl2::a acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-last

    (defthm vl-res-sigma-p-of-last
            (implies (vl-res-sigma-p (double-rewrite acl2::x))
                     (vl-res-sigma-p (last acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-nthcdr

    (defthm vl-res-sigma-p-of-nthcdr
            (implies (vl-res-sigma-p (double-rewrite acl2::x))
                     (vl-res-sigma-p (nthcdr acl2::n acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-butlast

    (defthm vl-res-sigma-p-of-butlast
            (implies (vl-res-sigma-p (double-rewrite acl2::x))
                     (vl-res-sigma-p (butlast acl2::x acl2::n)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-update-nth

    (defthm
     vl-res-sigma-p-of-update-nth
     (implies (vl-res-sigma-p (double-rewrite acl2::x))
              (iff (vl-res-sigma-p (update-nth acl2::n acl2::y acl2::x))
                   (and (and (consp acl2::y)
                             (vl-emodwire-p (car acl2::y))
                             (vl-emodwirelist-p (cdr acl2::y)))
                        (or (<= (nfix acl2::n) (len acl2::x))
                            (and (consp nil)
                                 (vl-emodwire-p (car nil))
                                 (vl-emodwirelist-p (cdr nil)))))))
     :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-repeat

    (defthm vl-res-sigma-p-of-repeat
            (iff (vl-res-sigma-p (repeat acl2::n acl2::x))
                 (or (and (consp acl2::x)
                          (vl-emodwire-p (car acl2::x))
                          (vl-emodwirelist-p (cdr acl2::x)))
                     (zp acl2::n)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-take

    (defthm vl-res-sigma-p-of-take
            (implies (vl-res-sigma-p (double-rewrite acl2::x))
                     (iff (vl-res-sigma-p (take acl2::n acl2::x))
                          (or (and (consp nil)
                                   (vl-emodwire-p (car nil))
                                   (vl-emodwirelist-p (cdr nil)))
                              (<= (nfix acl2::n) (len acl2::x)))))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-union-equal

    (defthm vl-res-sigma-p-of-union-equal
            (equal (vl-res-sigma-p (union-equal acl2::x acl2::y))
                   (and (vl-res-sigma-p (list-fix acl2::x))
                        (vl-res-sigma-p (double-rewrite acl2::y))))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-intersection-equal-2

    (defthm
         vl-res-sigma-p-of-intersection-equal-2
         (implies (vl-res-sigma-p (double-rewrite acl2::y))
                  (vl-res-sigma-p (intersection-equal acl2::x acl2::y)))
         :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-intersection-equal-1

    (defthm
         vl-res-sigma-p-of-intersection-equal-1
         (implies (vl-res-sigma-p (double-rewrite acl2::x))
                  (vl-res-sigma-p (intersection-equal acl2::x acl2::y)))
         :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-set-difference-equal

    (defthm
       vl-res-sigma-p-of-set-difference-equal
       (implies (vl-res-sigma-p acl2::x)
                (vl-res-sigma-p (set-difference-equal acl2::x acl2::y)))
       :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-set-equiv-congruence

    (defthm vl-res-sigma-p-set-equiv-congruence
            (implies (set-equiv acl2::x acl2::y)
                     (equal (vl-res-sigma-p acl2::x)
                            (vl-res-sigma-p acl2::y)))
            :rule-classes :congruence)

    Theorem: vl-res-sigma-p-when-subsetp-equal

    (defthm vl-res-sigma-p-when-subsetp-equal
            (and (implies (and (subsetp-equal acl2::x acl2::y)
                               (vl-res-sigma-p acl2::y))
                          (vl-res-sigma-p acl2::x))
                 (implies (and (vl-res-sigma-p acl2::y)
                               (subsetp-equal acl2::x acl2::y))
                          (vl-res-sigma-p acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-rcons

    (defthm vl-res-sigma-p-of-rcons
            (iff (vl-res-sigma-p (acl2::rcons acl2::a acl2::x))
                 (and (and (consp acl2::a)
                           (vl-emodwire-p (car acl2::a))
                           (vl-emodwirelist-p (cdr acl2::a)))
                      (vl-res-sigma-p (list-fix acl2::x))))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-rev

    (defthm vl-res-sigma-p-of-rev
            (equal (vl-res-sigma-p (rev acl2::x))
                   (vl-res-sigma-p (list-fix acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-duplicated-members

    (defthm vl-res-sigma-p-of-duplicated-members
            (implies (vl-res-sigma-p acl2::x)
                     (vl-res-sigma-p (duplicated-members acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-difference

    (defthm vl-res-sigma-p-of-difference
            (implies (vl-res-sigma-p acl2::x)
                     (vl-res-sigma-p (difference acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-intersect-2

    (defthm vl-res-sigma-p-of-intersect-2
            (implies (vl-res-sigma-p acl2::y)
                     (vl-res-sigma-p (intersect acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-intersect-1

    (defthm vl-res-sigma-p-of-intersect-1
            (implies (vl-res-sigma-p acl2::x)
                     (vl-res-sigma-p (intersect acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-union

    (defthm vl-res-sigma-p-of-union
            (iff (vl-res-sigma-p (union acl2::x acl2::y))
                 (and (vl-res-sigma-p (sfix acl2::x))
                      (vl-res-sigma-p (sfix acl2::y))))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-mergesort

    (defthm vl-res-sigma-p-of-mergesort
            (iff (vl-res-sigma-p (mergesort acl2::x))
                 (vl-res-sigma-p (list-fix acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-delete

    (defthm vl-res-sigma-p-of-delete
            (implies (vl-res-sigma-p acl2::x)
                     (vl-res-sigma-p (delete acl2::k acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-insert

    (defthm vl-res-sigma-p-of-insert
            (iff (vl-res-sigma-p (insert acl2::a acl2::x))
                 (and (vl-res-sigma-p (sfix acl2::x))
                      (and (consp acl2::a)
                           (vl-emodwire-p (car acl2::a))
                           (vl-emodwirelist-p (cdr acl2::a)))))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-sfix

    (defthm vl-res-sigma-p-of-sfix
            (iff (vl-res-sigma-p (sfix acl2::x))
                 (or (vl-res-sigma-p acl2::x)
                     (not (setp acl2::x))))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-list-fix

    (defthm vl-res-sigma-p-of-list-fix
            (equal (vl-res-sigma-p (list-fix acl2::x))
                   (vl-res-sigma-p acl2::x))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-append

    (defthm vl-res-sigma-p-of-append
            (equal (vl-res-sigma-p (append acl2::a acl2::b))
                   (and (vl-res-sigma-p acl2::a)
                        (vl-res-sigma-p acl2::b)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-when-not-consp

    (defthm vl-res-sigma-p-when-not-consp
            (implies (not (consp acl2::x))
                     (vl-res-sigma-p acl2::x))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-cdr-when-vl-res-sigma-p

    (defthm vl-res-sigma-p-of-cdr-when-vl-res-sigma-p
            (implies (vl-res-sigma-p (double-rewrite acl2::x))
                     (vl-res-sigma-p (cdr acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-cons

    (defthm vl-res-sigma-p-of-cons
            (equal (vl-res-sigma-p (cons acl2::a acl2::x))
                   (and (and (consp acl2::a)
                             (vl-emodwire-p (car acl2::a))
                             (vl-emodwirelist-p (cdr acl2::a)))
                        (vl-res-sigma-p acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-make-fal

    (defthm vl-res-sigma-p-of-make-fal
            (implies (and (vl-res-sigma-p acl2::x)
                          (vl-res-sigma-p acl2::y))
                     (vl-res-sigma-p (make-fal acl2::x acl2::y)))
            :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelist-p-of-cdr-when-member-equal-of-vl-res-sigma-p

    (defthm vl-emodwirelist-p-of-cdr-when-member-equal-of-vl-res-sigma-p
            (and (implies (and (vl-res-sigma-p acl2::x)
                               (member-equal acl2::a acl2::x))
                          (vl-emodwirelist-p (cdr acl2::a)))
                 (implies (and (member-equal acl2::a acl2::x)
                               (vl-res-sigma-p acl2::x))
                          (vl-emodwirelist-p (cdr acl2::a))))
            :rule-classes ((:rewrite)))

    Theorem: vl-emodwire-p-of-car-when-member-equal-of-vl-res-sigma-p

    (defthm vl-emodwire-p-of-car-when-member-equal-of-vl-res-sigma-p
            (and (implies (and (vl-res-sigma-p acl2::x)
                               (member-equal acl2::a acl2::x))
                          (vl-emodwire-p (car acl2::a)))
                 (implies (and (member-equal acl2::a acl2::x)
                               (vl-res-sigma-p acl2::x))
                          (vl-emodwire-p (car acl2::a))))
            :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-vl-res-sigma-p

    (defthm
       consp-when-member-equal-of-vl-res-sigma-p
       (implies (and (vl-res-sigma-p acl2::x)
                     (member-equal acl2::a acl2::x))
                (consp acl2::a))
       :rule-classes
       ((:rewrite :backchain-limit-lst (0 0))
        (:rewrite :backchain-limit-lst (0 0)
                  :corollary (implies (if (member-equal acl2::a acl2::x)
                                          (vl-res-sigma-p acl2::x)
                                          'nil)
                                      (consp acl2::a)))))

    Theorem: vl-emodwirelist-p-of-cdr-of-assoc-when-vl-res-sigma-p

    (defthm
       vl-emodwirelist-p-of-cdr-of-assoc-when-vl-res-sigma-p
       (implies (vl-res-sigma-p acl2::x)
                (vl-emodwirelist-p (cdr (assoc-equal acl2::k acl2::x))))
       :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-fast-alist-clean

    (defthm vl-res-sigma-p-of-fast-alist-clean
            (implies (vl-res-sigma-p acl2::x)
                     (vl-res-sigma-p (fast-alist-clean acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-hons-shrink-alist

    (defthm
         vl-res-sigma-p-of-hons-shrink-alist
         (implies (and (vl-res-sigma-p acl2::x)
                       (vl-res-sigma-p acl2::y))
                  (vl-res-sigma-p (hons-shrink-alist acl2::x acl2::y)))
         :rule-classes ((:rewrite)))

    Theorem: vl-res-sigma-p-of-hons-acons

    (defthm vl-res-sigma-p-of-hons-acons
            (equal (vl-res-sigma-p (hons-acons acl2::a acl2::n acl2::x))
                   (and (vl-emodwire-p acl2::a)
                        (vl-emodwirelist-p acl2::n)
                        (vl-res-sigma-p acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelist-p-of-cdr-of-hons-assoc-equal-when-vl-res-sigma-p

    (defthm
      vl-emodwirelist-p-of-cdr-of-hons-assoc-equal-when-vl-res-sigma-p
      (implies
           (vl-res-sigma-p acl2::x)
           (vl-emodwirelist-p (cdr (hons-assoc-equal acl2::k acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwire-p-of-caar-when-vl-res-sigma-p

    (defthm vl-emodwire-p-of-caar-when-vl-res-sigma-p
            (implies (vl-res-sigma-p acl2::x)
                     (iff (vl-emodwire-p (caar acl2::x))
                          (consp acl2::x)))
            :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelist-p-of-cdar-when-vl-res-sigma-p

    (defthm vl-emodwirelist-p-of-cdar-when-vl-res-sigma-p
            (implies (vl-res-sigma-p acl2::x)
                     (vl-emodwirelist-p (cdar acl2::x)))
            :rule-classes ((:rewrite)))