• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
          • Name-database
          • Vl-gc
          • Symbol-list-names
          • Ints-from
          • Nats-from
            • Nats-from-exec
          • Make-lookup-alist
          • Redundant-mergesort
          • Longest-common-prefix
          • Vl-remove-keys
          • Vl-plural-p
          • Vl-merge-contiguous-indices
          • Sum-nats
          • Vl-edition-p
          • Vl-maybe-integer-listp
          • Fast-memberp
          • Nat-listp
          • Max-nats
          • Longest-common-prefix-list
          • Character-list-listp
          • Vl-character-list-list-values-p
          • Remove-from-alist
          • Prefix-of-eachp
          • Vl-string-keys-p
          • Vl-maybe-nat-listp
          • Vl-string-list-values-p
          • String-list-listp
          • Vl-string-values-p
          • Explode-list
          • True-list-listp
          • Symbol-list-listp
          • All-have-len
          • Pos-listp
          • Min-nats
          • Debuggable-and
          • Vl-starname
          • Remove-equal-without-guard
          • String-fix
          • Anyp
          • Vl-maybe-string-list
          • Longer-than-p
          • Fast-alist-free-each-alist-val
          • Not*
          • Free-list-of-fast-alists
          • *nls*
        • Printer
        • Kit
        • Mlib
        • Transforms
      • X86isa
      • Svl
      • Rtl
    • Software-verification
    • Testing-utilities
    • Math
  • Utilities

Nats-from

(nats-from a b) enumerates the naturals from [a, b).

Signature
(nats-from a b) → *
Arguments
a — Guard (natp a).
b — Guard (natp b).

Definitions and Theorems

Function: nats-from

(defun
     nats-from (a b)
     (declare (xargs :guard (and (natp a) (natp b))))
     (declare (xargs :guard (<= a b)))
     (let ((__function__ 'nats-from))
          (declare (ignorable __function__))
          (mbe :logic (let ((a (lnfix a)) (b (lnfix b)))
                           (if (zp (- b a))
                               nil (cons a (nats-from (+ 1 a) b))))
               :exec (with-local-nrev (nats-from-exec a b nrev)))))

Theorem: nats-from-exec-removal

(defthm nats-from-exec-removal
        (equal (nats-from-exec a b nrev)
               (append nrev (nats-from a b))))

Theorem: true-listp-of-nats-from

(defthm true-listp-of-nats-from
        (true-listp (nats-from a b))
        :rule-classes :type-prescription)

Theorem: nat-listp-of-nats-from

(defthm nat-listp-of-nats-from
        (nat-listp (nats-from a b)))

Theorem: consp-of-nats-from

(defthm consp-of-nats-from
        (equal (consp (nats-from a b))
               (< (nfix a) (nfix b))))

Theorem: nats-from-self

(defthm nats-from-self
        (equal (nats-from a a) nil))

Theorem: member-equal-nats-from

(defthm member-equal-nats-from
        (iff (member-equal x (nats-from a b))
             (and (natp x)
                  (<= (nfix a) x)
                  (< x (nfix b)))))

Theorem: no-duplicatesp-equal-of-nats-from

(defthm no-duplicatesp-equal-of-nats-from
        (no-duplicatesp-equal (nats-from a b)))

Theorem: take-of-nats-from

(defthm
     take-of-nats-from
     (equal (take k (nats-from a b))
            (if (< (nfix k)
                   (nfix (- (nfix b) (nfix a))))
                (nats-from a (+ (nfix a) (nfix k)))
                (append (nats-from a b)
                        (replicate (- (nfix k)
                                      (nfix (- (nfix b) (nfix a))))
                                   nil)))))

Theorem: nthcdr-of-nats-from

(defthm nthcdr-of-nats-from
        (equal (nthcdr k (nats-from a b))
               (if (< (nfix k)
                      (nfix (- (nfix b) (nfix a))))
                   (nats-from (+ (nfix a) (nfix k)) b)
                   nil)))

Theorem: len-of-nats-from

(defthm len-of-nats-from
        (equal (len (nats-from a b))
               (nfix (- (nfix b) (nfix a)))))

Theorem: car-of-nats-from

(defthm car-of-nats-from
        (equal (car (nats-from a b))
               (if (< (nfix a) (nfix b))
                   (nfix a)
                   nil)))

Theorem: nth-of-nats-from

(defthm nth-of-nats-from
        (equal (nth n (nats-from a b))
               (if (< (nfix n)
                      (nfix (- (nfix b) (nfix a))))
                   (+ (nfix a) (nfix n))
                   nil)))

Theorem: setp-of-nats-from

(defthm setp-of-nats-from
        (setp (nats-from a b)))

Subtopics

Nats-from-exec