• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Vwsim
      • Fgl
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
          • Name-database
          • Vl-gc
          • Symbol-list-names
          • Ints-from
          • Nats-from
          • Make-lookup-alist
          • Redundant-mergesort
          • Longest-common-prefix
          • Vl-plural-p
          • Vl-remove-keys
          • Vl-merge-contiguous-indices
          • Vl-edition-p
          • Sum-nats
          • Vl-maybe-integer-listp
          • Fast-memberp
          • Nat-listp
          • Max-nats
          • Longest-common-prefix-list
          • Character-list-listp
          • Vl-character-list-list-values-p
          • Remove-from-alist
          • Prefix-of-eachp
          • Vl-string-keys-p
          • Vl-maybe-nat-listp
          • Vl-string-list-values-p
          • String-list-listp
          • Vl-string-values-p
          • True-list-listp
          • Symbol-list-listp
          • Explode-list
          • All-have-len
          • Pos-listp
            • Pos-listp-basics
            • Min-nats
            • Debuggable-and
            • Vl-starname
            • Remove-equal-without-guard
            • Vl-maybe-string-list
            • String-fix
            • Longer-than-p
            • Anyp
            • Fast-alist-free-each-alist-val
            • Not*
            • Free-list-of-fast-alists
            • *nls*
          • Printer
          • Kit
          • Mlib
          • Transforms
        • Svl
        • X86isa
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Pos-listp

    Pos-listp-basics

    Basic theorems about pos-listp, generated by deflist.

    Definitions and Theorems

    Theorem: pos-listp-of-cons

    (defthm pos-listp-of-cons
      (equal (pos-listp (cons acl2::a acl2::x))
             (and (posp acl2::a)
                  (pos-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-cdr-when-pos-listp

    (defthm pos-listp-of-cdr-when-pos-listp
      (implies (pos-listp (double-rewrite acl2::x))
               (pos-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-when-not-consp

    (defthm pos-listp-when-not-consp
      (implies (not (consp acl2::x))
               (pos-listp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: posp-of-car-when-pos-listp

    (defthm posp-of-car-when-pos-listp
      (implies (pos-listp acl2::x)
               (iff (posp (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-append

    (defthm pos-listp-of-append
      (equal (pos-listp (append acl2::a acl2::b))
             (and (pos-listp acl2::a)
                  (pos-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-list-fix

    (defthm pos-listp-of-list-fix
      (equal (pos-listp (list-fix acl2::x))
             (pos-listp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-sfix

    (defthm pos-listp-of-sfix
      (iff (pos-listp (sfix acl2::x))
           (or (pos-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-insert

    (defthm pos-listp-of-insert
      (iff (pos-listp (insert acl2::a acl2::x))
           (and (pos-listp (sfix acl2::x))
                (posp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-delete

    (defthm pos-listp-of-delete
      (implies (pos-listp acl2::x)
               (pos-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-mergesort

    (defthm pos-listp-of-mergesort
      (iff (pos-listp (mergesort acl2::x))
           (pos-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-union

    (defthm pos-listp-of-union
      (iff (pos-listp (union acl2::x acl2::y))
           (and (pos-listp (sfix acl2::x))
                (pos-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-intersect-1

    (defthm pos-listp-of-intersect-1
      (implies (pos-listp acl2::x)
               (pos-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-intersect-2

    (defthm pos-listp-of-intersect-2
      (implies (pos-listp acl2::y)
               (pos-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-difference

    (defthm pos-listp-of-difference
      (implies (pos-listp acl2::x)
               (pos-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-duplicated-members

    (defthm pos-listp-of-duplicated-members
      (implies (pos-listp acl2::x)
               (pos-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-rev

    (defthm pos-listp-of-rev
      (equal (pos-listp (rev acl2::x))
             (pos-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-rcons

    (defthm pos-listp-of-rcons
      (iff (pos-listp (acl2::rcons acl2::a acl2::x))
           (and (posp acl2::a)
                (pos-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: posp-when-member-equal-of-pos-listp

    (defthm posp-when-member-equal-of-pos-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (pos-listp acl2::x))
                    (posp acl2::a))
           (implies (and (pos-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (posp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-when-subsetp-equal

    (defthm pos-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (pos-listp acl2::y))
                    (pos-listp acl2::x))
           (implies (and (pos-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (pos-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-set-equiv-congruence

    (defthm pos-listp-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (pos-listp acl2::x)
                      (pos-listp acl2::y)))
      :rule-classes :congruence)

    Theorem: pos-listp-of-set-difference-equal

    (defthm pos-listp-of-set-difference-equal
      (implies (pos-listp acl2::x)
               (pos-listp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-intersection-equal-1

    (defthm pos-listp-of-intersection-equal-1
      (implies (pos-listp (double-rewrite acl2::x))
               (pos-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-intersection-equal-2

    (defthm pos-listp-of-intersection-equal-2
      (implies (pos-listp (double-rewrite acl2::y))
               (pos-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-union-equal

    (defthm pos-listp-of-union-equal
      (equal (pos-listp (union-equal acl2::x acl2::y))
             (and (pos-listp (list-fix acl2::x))
                  (pos-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-take

    (defthm pos-listp-of-take
      (implies (pos-listp (double-rewrite acl2::x))
               (iff (pos-listp (take acl2::n acl2::x))
                    (or (posp nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-repeat

    (defthm pos-listp-of-repeat
      (iff (pos-listp (repeat acl2::n acl2::x))
           (or (posp acl2::x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: posp-of-nth-when-pos-listp

    (defthm posp-of-nth-when-pos-listp
      (implies (pos-listp acl2::x)
               (iff (posp (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-update-nth

    (defthm pos-listp-of-update-nth
      (implies (pos-listp (double-rewrite acl2::x))
               (iff (pos-listp (update-nth acl2::n acl2::y acl2::x))
                    (and (posp acl2::y)
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (posp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-butlast

    (defthm pos-listp-of-butlast
      (implies (pos-listp (double-rewrite acl2::x))
               (pos-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-nthcdr

    (defthm pos-listp-of-nthcdr
      (implies (pos-listp (double-rewrite acl2::x))
               (pos-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-last

    (defthm pos-listp-of-last
      (implies (pos-listp (double-rewrite acl2::x))
               (pos-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-remove

    (defthm pos-listp-of-remove
      (implies (pos-listp acl2::x)
               (pos-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: pos-listp-of-revappend

    (defthm pos-listp-of-revappend
      (equal (pos-listp (revappend acl2::x acl2::y))
             (and (pos-listp (list-fix acl2::x))
                  (pos-listp acl2::y)))
      :rule-classes ((:rewrite)))