• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Vwsim
      • Fgl
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
          • Name-database
          • Vl-gc
          • Symbol-list-names
          • Ints-from
          • Nats-from
          • Make-lookup-alist
          • Redundant-mergesort
          • Longest-common-prefix
          • Vl-remove-keys
          • Vl-plural-p
          • Vl-merge-contiguous-indices
          • Sum-nats
            • Vl-edition-p
            • Vl-maybe-integer-listp
            • Fast-memberp
            • Nat-listp
            • Max-nats
            • Longest-common-prefix-list
            • Character-list-listp
            • Vl-character-list-list-values-p
            • Remove-from-alist
            • Prefix-of-eachp
            • Vl-string-keys-p
            • Vl-maybe-nat-listp
            • Vl-string-list-values-p
            • String-list-listp
            • Vl-string-values-p
            • Explode-list
            • True-list-listp
            • Symbol-list-listp
            • All-have-len
            • Pos-listp
            • Min-nats
            • Debuggable-and
            • Vl-starname
            • Remove-equal-without-guard
            • String-fix
            • Anyp
            • Vl-maybe-string-list
            • Longer-than-p
            • Fast-alist-free-each-alist-val
            • Not*
            • Free-list-of-fast-alists
            • *nls*
          • Printer
          • Kit
          • Mlib
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Utilities

    Sum-nats

    Sum a list of natural numbers.

    Signature
    (sum-nats x) → *
    Arguments
    x — Guard (nat-listp x).

    Definitions and Theorems

    Function: tr-sum-nats

    (defun tr-sum-nats (x acc)
           (declare (xargs :guard (and (nat-listp x) (natp acc)))
                    (type integer acc))
           (if (consp x)
               (tr-sum-nats (cdr x)
                            (the integer (+ (car x) acc)))
               acc))

    Function: sum-nats

    (defun sum-nats (x)
           (declare (xargs :guard (nat-listp x)))
           (let ((__function__ 'sum-nats))
                (declare (ignorable __function__))
                (mbe :logic (if (consp x)
                                (+ (nfix (car x)) (sum-nats (cdr x)))
                                0)
                     :exec (tr-sum-nats x 0))))

    Theorem: sum-nats-when-atom

    (defthm sum-nats-when-atom
            (implies (atom x)
                     (equal (sum-nats x) 0)))

    Theorem: sum-nats-of-cons

    (defthm sum-nats-of-cons
            (equal (sum-nats (cons a x))
                   (+ (nfix a) (sum-nats x))))

    Theorem: sum-nats-of-list-fix

    (defthm sum-nats-of-list-fix
            (equal (sum-nats (list-fix x))
                   (sum-nats x)))

    Theorem: sum-nats-of-append

    (defthm sum-nats-of-append
            (equal (sum-nats (append x y))
                   (+ (sum-nats x) (sum-nats y))))

    Theorem: sum-nats-of-rev

    (defthm sum-nats-of-rev
            (equal (sum-nats (rev x)) (sum-nats x)))

    Theorem: sum-nats-of-revappend

    (defthm sum-nats-of-revappend
            (equal (sum-nats (revappend x y))
                   (+ (sum-nats x) (sum-nats y))))

    Theorem: sum-nats-of-reverse

    (defthm sum-nats-of-reverse
            (implies (true-listp x)
                     (equal (sum-nats (reverse x))
                            (sum-nats x))))

    Theorem: sum-nats-when-all-equalp

    (defthm sum-nats-when-all-equalp
            (implies (all-equalp n x)
                     (equal (sum-nats x)
                            (* (nfix n) (len x)))))

    Theorem: sum-nats-when-all-equalp-1

    (defthm sum-nats-when-all-equalp-1
            (implies (all-equalp 1 x)
                     (equal (sum-nats x) (len x))))