• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Vwsim
      • Fgl
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
        • Mlib
        • Transforms
          • Unparameterization
          • Elaborate
          • Addnames
          • Annotate
            • Increment-elim
            • Make-implicit-wires
            • Basic-bind-elim
            • Argresolve
            • Basicsanity
            • Portdecl-sign
            • Enum-names
              • Vl-enumname-range-declarations
              • Vl-interfacelist-add-enumname-declarations
              • Vl-packagelist-add-enumname-declarations
              • Vl-modulelist-add-enumname-declarations
              • Vl-classlist-add-enumname-declarations
              • Vl-enumitemlist-enumname-declarations
              • Vl-enumname-declarations
              • Vl-paramdecl-enumname-declarations
              • Vl-paramdecllist-enumname-declarations
              • Vl-vardecllist-enumname-declarations
              • Vl-typedeflist-enumname-declarations
              • Vl-vardecl-enumname-declarations
              • Vl-typedef-enumname-declarations
              • Vl-package-add-enumname-declarations
              • Vl-design-add-enumname-declarations
              • Vl-interface-add-enumname-declarations
              • Vl-class-add-enumname-declarations
              • Vl-module-add-enumname-declarations
              • Vl-datatype-map
                • Vl-datatype-map-p
                • Vl-datatype-map-fix
                  • Vl-datatype-map-equiv
              • Port-resolve
              • Udp-elim
              • Vl-annotate-design
              • Vl-annotate-module
            • Clean-warnings
            • Eliminitial
            • Custom-transform-hooks
            • Problem-modules
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Vl-datatype-map

    Vl-datatype-map-fix

    (vl-datatype-map-fix x) is an fty alist fixing function that follows the drop-keys strategy.

    Signature
    (vl-datatype-map-fix x) → fty::newx
    Arguments
    x — Guard (vl-datatype-map-p x).
    Returns
    fty::newx — Type (vl-datatype-map-p fty::newx).

    Note that in the execution this is just an inline identity function.

    Definitions and Theorems

    Function: vl-datatype-map-fix$inline

    (defun vl-datatype-map-fix$inline (x)
      (declare (xargs :guard (vl-datatype-map-p x)))
      (let ((__function__ 'vl-datatype-map-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (let ((rest (vl-datatype-map-fix (cdr x))))
                 (if (and (consp (car x))
                          (vl-datatype-p (caar x)))
                     (let ((fty::first-key (caar x))
                           (fty::first-val (vl-datatype-fix (cdar x))))
                       (cons (cons fty::first-key fty::first-val)
                             rest))
                   rest)))
             :exec x)))

    Theorem: vl-datatype-map-p-of-vl-datatype-map-fix

    (defthm vl-datatype-map-p-of-vl-datatype-map-fix
      (b* ((fty::newx (vl-datatype-map-fix$inline x)))
        (vl-datatype-map-p fty::newx))
      :rule-classes :rewrite)

    Theorem: vl-datatype-map-fix-when-vl-datatype-map-p

    (defthm vl-datatype-map-fix-when-vl-datatype-map-p
      (implies (vl-datatype-map-p x)
               (equal (vl-datatype-map-fix x) x)))

    Function: vl-datatype-map-equiv$inline

    (defun vl-datatype-map-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (vl-datatype-map-p acl2::x)
                                  (vl-datatype-map-p acl2::y))))
      (equal (vl-datatype-map-fix acl2::x)
             (vl-datatype-map-fix acl2::y)))

    Theorem: vl-datatype-map-equiv-is-an-equivalence

    (defthm vl-datatype-map-equiv-is-an-equivalence
      (and (booleanp (vl-datatype-map-equiv x y))
           (vl-datatype-map-equiv x x)
           (implies (vl-datatype-map-equiv x y)
                    (vl-datatype-map-equiv y x))
           (implies (and (vl-datatype-map-equiv x y)
                         (vl-datatype-map-equiv y z))
                    (vl-datatype-map-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: vl-datatype-map-equiv-implies-equal-vl-datatype-map-fix-1

    (defthm vl-datatype-map-equiv-implies-equal-vl-datatype-map-fix-1
      (implies (vl-datatype-map-equiv acl2::x x-equiv)
               (equal (vl-datatype-map-fix acl2::x)
                      (vl-datatype-map-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: vl-datatype-map-fix-under-vl-datatype-map-equiv

    (defthm vl-datatype-map-fix-under-vl-datatype-map-equiv
      (vl-datatype-map-equiv (vl-datatype-map-fix acl2::x)
                             acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-datatype-map-fix-1-forward-to-vl-datatype-map-equiv

    (defthm
        equal-of-vl-datatype-map-fix-1-forward-to-vl-datatype-map-equiv
      (implies (equal (vl-datatype-map-fix acl2::x)
                      acl2::y)
               (vl-datatype-map-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-vl-datatype-map-fix-2-forward-to-vl-datatype-map-equiv

    (defthm
        equal-of-vl-datatype-map-fix-2-forward-to-vl-datatype-map-equiv
      (implies (equal acl2::x (vl-datatype-map-fix acl2::y))
               (vl-datatype-map-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-datatype-map-equiv-of-vl-datatype-map-fix-1-forward

    (defthm vl-datatype-map-equiv-of-vl-datatype-map-fix-1-forward
      (implies (vl-datatype-map-equiv (vl-datatype-map-fix acl2::x)
                                      acl2::y)
               (vl-datatype-map-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: vl-datatype-map-equiv-of-vl-datatype-map-fix-2-forward

    (defthm vl-datatype-map-equiv-of-vl-datatype-map-fix-2-forward
      (implies
           (vl-datatype-map-equiv acl2::x (vl-datatype-map-fix acl2::y))
           (vl-datatype-map-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: cons-of-vl-datatype-fix-v-under-vl-datatype-map-equiv

    (defthm cons-of-vl-datatype-fix-v-under-vl-datatype-map-equiv
      (vl-datatype-map-equiv
           (cons (cons acl2::k (vl-datatype-fix acl2::v))
                 acl2::x)
           (cons (cons acl2::k acl2::v) acl2::x)))

    Theorem: cons-vl-datatype-equiv-congruence-on-v-under-vl-datatype-map-equiv

    (defthm
     cons-vl-datatype-equiv-congruence-on-v-under-vl-datatype-map-equiv
     (implies
          (vl-datatype-equiv acl2::v v-equiv)
          (vl-datatype-map-equiv (cons (cons acl2::k acl2::v) acl2::x)
                                 (cons (cons acl2::k v-equiv) acl2::x)))
     :rule-classes :congruence)

    Theorem: cons-of-vl-datatype-map-fix-y-under-vl-datatype-map-equiv

    (defthm cons-of-vl-datatype-map-fix-y-under-vl-datatype-map-equiv
     (vl-datatype-map-equiv (cons acl2::x (vl-datatype-map-fix acl2::y))
                            (cons acl2::x acl2::y)))

    Theorem: cons-vl-datatype-map-equiv-congruence-on-y-under-vl-datatype-map-equiv

    (defthm
     cons-vl-datatype-map-equiv-congruence-on-y-under-vl-datatype-map-equiv
     (implies (vl-datatype-map-equiv acl2::y y-equiv)
              (vl-datatype-map-equiv (cons acl2::x acl2::y)
                                     (cons acl2::x y-equiv)))
     :rule-classes :congruence)

    Theorem: vl-datatype-map-fix-of-acons

    (defthm vl-datatype-map-fix-of-acons
      (equal (vl-datatype-map-fix (cons (cons acl2::a acl2::b) x))
             (let ((rest (vl-datatype-map-fix x)))
               (if (and (vl-datatype-p acl2::a))
                   (let ((fty::first-key acl2::a)
                         (fty::first-val (vl-datatype-fix acl2::b)))
                     (cons (cons fty::first-key fty::first-val)
                           rest))
                 rest))))

    Theorem: hons-assoc-equal-of-vl-datatype-map-fix

    (defthm hons-assoc-equal-of-vl-datatype-map-fix
      (equal (hons-assoc-equal acl2::k (vl-datatype-map-fix acl2::x))
             (let ((fty::pair (hons-assoc-equal acl2::k acl2::x)))
               (and (vl-datatype-p acl2::k)
                    fty::pair
                    (cons acl2::k
                          (vl-datatype-fix (cdr fty::pair)))))))

    Theorem: vl-datatype-map-fix-of-append

    (defthm vl-datatype-map-fix-of-append
      (equal (vl-datatype-map-fix (append std::a std::b))
             (append (vl-datatype-map-fix std::a)
                     (vl-datatype-map-fix std::b))))

    Theorem: consp-car-of-vl-datatype-map-fix

    (defthm consp-car-of-vl-datatype-map-fix
      (equal (consp (car (vl-datatype-map-fix x)))
             (consp (vl-datatype-map-fix x))))