• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Vwsim
      • Fgl
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
        • Mlib
          • Scopestack
          • Hid-tools
          • Filtering-by-name
          • Vl-interface-mocktype
          • Stripping-functions
          • Genblob
          • Expr-tools
          • Hierarchy
          • Extract-vl-types
          • Range-tools
          • Finding-by-name
          • Stmt-tools
          • Modnamespace
          • Flat-warnings
          • Reordering-by-name
          • Datatype-tools
            • Vl-dimensionlist-total-size
            • Vl-maybe-usertype-resolve
            • Vl-dimensionlist-resolved-p
              • Vl-datatype-packedp
              • Vl-datatype-select-ok
              • Vl-dimension-size
              • Vl-datatype-size
              • Vl-maybe-dimension-size
              • Vl-hidexpr-name1
              • Maybe-nat-list
            • Syscalls
            • Allexprs
            • Lvalues
            • Port-tools
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Datatype-tools

    Vl-dimensionlist-resolved-p

    Returns true if all sized dimensions are resolved.

    Signature
    (vl-dimensionlist-resolved-p x) → *
    Arguments
    x — Guard (vl-dimensionlist-p x).

    Definitions and Theorems

    Function: vl-dimensionlist-resolved-p

    (defun vl-dimensionlist-resolved-p (x)
           (declare (xargs :guard (vl-dimensionlist-p x)))
           (let ((__function__ 'vl-dimensionlist-resolved-p))
                (declare (ignorable __function__))
                (b* (((when (atom x)) t)
                     ((mv unresolved ?size)
                      (vl-dimension-size (car x))))
                    (and (not unresolved)
                         (vl-dimensionlist-resolved-p (cdr x))))))

    Theorem: vl-dimensionlist-resolved-p-when-atom

    (defthm vl-dimensionlist-resolved-p-when-atom
            (implies (atom x)
                     (vl-dimensionlist-resolved-p x)))

    Theorem: vl-dimensionlist-resolved-p-of-cons

    (defthm vl-dimensionlist-resolved-p-of-cons
            (equal (vl-dimensionlist-resolved-p (cons a x))
                   (and (b* (((mv unresolved ?size)
                              (vl-dimension-size a)))
                            (not unresolved))
                        (vl-dimensionlist-resolved-p x))))

    Theorem: vl-dimensionlist-resolved-p-of-cdr

    (defthm vl-dimensionlist-resolved-p-of-cdr
            (implies (vl-dimensionlist-resolved-p x)
                     (vl-dimensionlist-resolved-p (cdr x))))

    Theorem: vl-dimensionlist-resolved-p-of-append

    (defthm vl-dimensionlist-resolved-p-of-append
            (equal (vl-dimensionlist-resolved-p (append x y))
                   (and (vl-dimensionlist-resolved-p x)
                        (vl-dimensionlist-resolved-p y))))

    Theorem: vl-dimensionlist-resolved-p-of-vl-dimensionlist-fix-x

    (defthm
         vl-dimensionlist-resolved-p-of-vl-dimensionlist-fix-x
         (equal (vl-dimensionlist-resolved-p (vl-dimensionlist-fix x))
                (vl-dimensionlist-resolved-p x)))

    Theorem: vl-dimensionlist-resolved-p-vl-dimensionlist-equiv-congruence-on-x

    (defthm
      vl-dimensionlist-resolved-p-vl-dimensionlist-equiv-congruence-on-x
      (implies (vl-dimensionlist-equiv x x-equiv)
               (equal (vl-dimensionlist-resolved-p x)
                      (vl-dimensionlist-resolved-p x-equiv)))
      :rule-classes :congruence)