• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Debugging
    • Projects
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
        • Mlib
        • Transforms
          • Unparameterization
          • Elaborate
          • Addnames
          • Annotate
            • Increment-elim
            • Make-implicit-wires
            • Basic-bind-elim
            • Argresolve
              • Vl-convert-namedargs
              • Vl-unhierarchicalize-interfaceport
              • Vl-interfacelist-argresolve
              • Vl-modulelist-argresolve
              • Vl-arguments-argresolve
              • Vl-gateinst-dirassign
              • Vl-unhierarchicalize-interfaceports
              • Vl-check-blankargs
              • Vl-annotate-plainargs
              • Vl-modinst-maybe-argresolve
              • Vl-modinst-argresolve
              • Vl-modinstlist-argresolve
              • Vl-gateinstlist-dirassign
              • Vl-interface-argresolve
              • Vl-module-argresolve
                • Vl-namedarglist-alist
                • Vl-make-namedarg-alist
                • Vl-design-argresolve
                • Vl-fast-find-namedarg
                • Vl-namedarg-alist
                • Vl-scopeitem-interfaceport-p
                • Vl-scopeitem-modport-p
                • Vl-scopeitem-modinst-p
                • Vl-port-interface-p
              • Basicsanity
              • Portdecl-sign
              • Enum-names
              • Port-resolve
              • Udp-elim
              • Vl-annotate-design
              • Vl-annotate-module
            • Clean-warnings
            • Eliminitial
            • Custom-transform-hooks
            • Problem-modules
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Argresolve

    Vl-module-argresolve

    Apply the argresolve transformation to a vl-module-p.

    Signature
    (vl-module-argresolve x ss) → new-x
    Arguments
    x — Guard (vl-module-p x).
    ss — Guard (vl-scopestack-p ss).
    Returns
    new-x — Type (vl-module-p new-x).

    This is just glue-code to apply vl-modinst-argresolve to all of the module instances, and vl-gateinst-dirassign to all of the gate instances in the module.

    Definitions and Theorems

    Function: vl-module-argresolve

    (defun
         vl-module-argresolve (x ss)
         (declare (xargs :guard (and (vl-module-p x)
                                     (vl-scopestack-p ss))))
         (let ((__function__ 'vl-module-argresolve))
              (declare (ignorable __function__))
              (b* (((when (vl-module->hands-offp x))
                    (vl-module-fix x))
                   ((mv warnings genblob)
                    (vl-genblob-argresolve (vl-module->genblob x)
                                           ss (vl-module->warnings x)))
                   (x-warn (change-vl-module x
                                             :warnings warnings)))
                  (vl-genblob->module genblob x-warn))))

    Theorem: vl-module-p-of-vl-module-argresolve

    (defthm vl-module-p-of-vl-module-argresolve
            (b* ((new-x (vl-module-argresolve x ss)))
                (vl-module-p new-x))
            :rule-classes :rewrite)

    Theorem: vl-module-argresolve-of-vl-module-fix-x

    (defthm vl-module-argresolve-of-vl-module-fix-x
            (equal (vl-module-argresolve (vl-module-fix x)
                                         ss)
                   (vl-module-argresolve x ss)))

    Theorem: vl-module-argresolve-vl-module-equiv-congruence-on-x

    (defthm vl-module-argresolve-vl-module-equiv-congruence-on-x
            (implies (vl-module-equiv x x-equiv)
                     (equal (vl-module-argresolve x ss)
                            (vl-module-argresolve x-equiv ss)))
            :rule-classes :congruence)

    Theorem: vl-module-argresolve-of-vl-scopestack-fix-ss

    (defthm vl-module-argresolve-of-vl-scopestack-fix-ss
            (equal (vl-module-argresolve x (vl-scopestack-fix ss))
                   (vl-module-argresolve x ss)))

    Theorem: vl-module-argresolve-vl-scopestack-equiv-congruence-on-ss

    (defthm vl-module-argresolve-vl-scopestack-equiv-congruence-on-ss
            (implies (vl-scopestack-equiv ss ss-equiv)
                     (equal (vl-module-argresolve x ss)
                            (vl-module-argresolve x ss-equiv)))
            :rule-classes :congruence)