• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Vwsim
      • Fgl
      • Vl
        • Syntax
          • Vl-module
          • Vl-vardecl
          • Vl-fundecl
          • Vl-interface
          • Vl-design
          • Vl-assign
          • Vl-modinst
          • Vl-gateinst
          • Vl-taskdecl
          • Vl-portdecl
          • Vl-commentmap
          • Vl-dpiimport
          • Vl-ansi-portdecl
          • Vl-package
          • Vl-paramdecl
          • Vl-dpiexport
          • Vl-plainarglist->exprs
          • Vl-class
          • Vl-taskdecllist->names
          • Vl-sort-blockitems-aux
          • Vl-fundecllist->names
          • Expressions-and-datatypes
          • Vl-udp
          • Vl-port
          • Vl-genelement
          • Vl-clkdecl
          • Vl-parse-temps
          • Vl-bind
          • Vl-namedarg
          • Vl-exprdist
          • Vl-clkassign
          • Vl-range
          • Vl-propport
          • Vl-typedef
          • Vl-gatedelay
          • Vl-dimension
          • Vl-sequence
          • Vl-clkskew
          • Vl-program
          • Vl-gatestrength
          • Vl-property
          • Vl-config
          • Vl-always
          • Vl-import
          • Vl-repeateventcontrol
          • Vl-timeliteral
          • Vl-initial
          • Vl-eventcontrol
          • Vl-udpsymbol-p
          • Vl-final
          • Vl-maybe-clkskew
          • Vl-alias
          • Vl-maybe-nettypename
          • Vl-maybe-gatedelay
          • Vl-letdecl
          • Vl-direction-p
          • Vl-modelement
          • Vl-maybe-timeprecisiondecl
          • Vl-maybe-scopeid
          • Vl-maybe-gatestrength
          • Vl-maybe-direction
          • Vl-maybe-delayoreventcontrol
          • Vl-gclkdecl
          • Vl-fwdtypedef
          • Vl-maybe-udpsymbol-p
          • Vl-maybe-timeunitdecl
          • Vl-maybe-timeliteral
          • Vl-maybe-parse-temps
          • Vl-maybe-cstrength
          • Vl-arguments
          • Vl-maybe-module
          • Vl-maybe-design
          • Vl-covergroup
          • Vl-udpline
          • Vl-timeunitdecl
          • Vl-genvar
          • Vl-defaultdisable
          • Vl-context1
          • Vl-timeprecisiondecl
          • Vl-sort-blockitems
          • Vl-elabtask
          • Vl-udpedge
          • Vl-delaycontrol
          • Vl-context
          • Vl-modelement->loc
          • Vl-ctxelement
          • Vl-ctxelement->loc
          • Statements
          • Vl-interface->ifports
          • Vl-blockitem
          • Vl-vardecllist
          • Vl-module->ifports
          • Vl-lifetime-p
          • Vl-syntaxversion
          • Vl-nettypename-p
          • Vl-paramdecllist
          • Vl-modelementlist->genelements
          • Vl-importlist
          • Vl-gatetype-p
          • Vl-typedeflist
          • Vl-genelement->loc
          • Vl-cstrength-p
          • Vl-port->name
          • Vl-elabtask->loc
          • Vl-delayoreventcontrol
          • Vl-udpentry-p
          • Vl-portdecllist
          • Vl-port->loc
          • Property-expressions
          • Vl-taskdecllist
          • Vl-fundecllist
          • Vl-sequencelist
          • Vl-propertylist
          • Vl-portlist
          • Vl-dpiimportlist
          • Vl-dpiexportlist
          • Vl-classlist
          • Vl-arguments->args
          • Vl-alwaystype-p
          • Vl-modinstlist
          • Vl-importpart-p
          • Vl-importpart-fix
          • Vl-blockstmt-p
          • Vl-bindlist
          • Vl-initiallist
          • Vl-genvarlist
          • Vl-gclkdecllist
          • Vl-finallist
          • Vl-elabtasklist
          • Vl-defaultdisablelist
          • Vl-clkdecllist
          • Vl-cassertionlist
          • Vl-assignlist
          • Vl-assertionlist
          • Vl-alwayslist
          • Vl-aliaslist
          • Vl-udptable
          • Vl-udplist
          • Vl-udpentrylist
          • Vl-propportlist
            • Vl-propportlist-fix
              • Vl-propportlist-equiv
              • Vl-propportlist-p
            • Vl-programlist
            • Vl-packagelist
            • Vl-namedarglist
            • Vl-modulelist
            • Vl-modportlist
            • Vl-modport-portlist
            • Vl-letdecllist
            • Vl-interfacelist
            • Vl-gateinstlist
            • Vl-fwdtypedeflist
            • Vl-covergrouplist
            • Vl-configlist
            • Vl-clkassignlist
            • Vl-casekey-p
            • Vl-blockitemlist
            • Vl-ansi-portdecllist
            • Vl-regularportlist
            • Vl-paramdecllist-list
            • Vl-modelementlist
            • Vl-interfaceportlist
          • Loader
          • Warnings
          • Getting-started
          • Utilities
          • Printer
          • Kit
          • Mlib
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Testing-utilities
      • Math
    • Vl-propportlist

    Vl-propportlist-fix

    (vl-propportlist-fix x) is a usual fty list fixing function.

    Signature
    (vl-propportlist-fix x) → fty::newx
    Arguments
    x — Guard (vl-propportlist-p x).
    Returns
    fty::newx — Type (vl-propportlist-p fty::newx).

    In the logic, we apply vl-propport-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: vl-propportlist-fix$inline

    (defun vl-propportlist-fix$inline (x)
           (declare (xargs :guard (vl-propportlist-p x)))
           (let ((__function__ 'vl-propportlist-fix))
                (declare (ignorable __function__))
                (mbe :logic (if (atom x)
                                x
                                (cons (vl-propport-fix (car x))
                                      (vl-propportlist-fix (cdr x))))
                     :exec x)))

    Theorem: vl-propportlist-p-of-vl-propportlist-fix

    (defthm vl-propportlist-p-of-vl-propportlist-fix
            (b* ((fty::newx (vl-propportlist-fix$inline x)))
                (vl-propportlist-p fty::newx))
            :rule-classes :rewrite)

    Theorem: vl-propportlist-fix-when-vl-propportlist-p

    (defthm vl-propportlist-fix-when-vl-propportlist-p
            (implies (vl-propportlist-p x)
                     (equal (vl-propportlist-fix x) x)))

    Function: vl-propportlist-equiv$inline

    (defun vl-propportlist-equiv$inline
           (acl2::x acl2::y)
           (declare (xargs :guard (and (vl-propportlist-p acl2::x)
                                       (vl-propportlist-p acl2::y))))
           (equal (vl-propportlist-fix acl2::x)
                  (vl-propportlist-fix acl2::y)))

    Theorem: vl-propportlist-equiv-is-an-equivalence

    (defthm vl-propportlist-equiv-is-an-equivalence
            (and (booleanp (vl-propportlist-equiv x y))
                 (vl-propportlist-equiv x x)
                 (implies (vl-propportlist-equiv x y)
                          (vl-propportlist-equiv y x))
                 (implies (and (vl-propportlist-equiv x y)
                               (vl-propportlist-equiv y z))
                          (vl-propportlist-equiv x z)))
            :rule-classes (:equivalence))

    Theorem: vl-propportlist-equiv-implies-equal-vl-propportlist-fix-1

    (defthm vl-propportlist-equiv-implies-equal-vl-propportlist-fix-1
            (implies (vl-propportlist-equiv acl2::x x-equiv)
                     (equal (vl-propportlist-fix acl2::x)
                            (vl-propportlist-fix x-equiv)))
            :rule-classes (:congruence))

    Theorem: vl-propportlist-fix-under-vl-propportlist-equiv

    (defthm vl-propportlist-fix-under-vl-propportlist-equiv
            (vl-propportlist-equiv (vl-propportlist-fix acl2::x)
                                   acl2::x)
            :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-vl-propportlist-fix-1-forward-to-vl-propportlist-equiv

    (defthm
         equal-of-vl-propportlist-fix-1-forward-to-vl-propportlist-equiv
         (implies (equal (vl-propportlist-fix acl2::x)
                         acl2::y)
                  (vl-propportlist-equiv acl2::x acl2::y))
         :rule-classes :forward-chaining)

    Theorem: equal-of-vl-propportlist-fix-2-forward-to-vl-propportlist-equiv

    (defthm
         equal-of-vl-propportlist-fix-2-forward-to-vl-propportlist-equiv
         (implies (equal acl2::x (vl-propportlist-fix acl2::y))
                  (vl-propportlist-equiv acl2::x acl2::y))
         :rule-classes :forward-chaining)

    Theorem: vl-propportlist-equiv-of-vl-propportlist-fix-1-forward

    (defthm
         vl-propportlist-equiv-of-vl-propportlist-fix-1-forward
         (implies (vl-propportlist-equiv (vl-propportlist-fix acl2::x)
                                         acl2::y)
                  (vl-propportlist-equiv acl2::x acl2::y))
         :rule-classes :forward-chaining)

    Theorem: vl-propportlist-equiv-of-vl-propportlist-fix-2-forward

    (defthm
      vl-propportlist-equiv-of-vl-propportlist-fix-2-forward
      (implies
           (vl-propportlist-equiv acl2::x (vl-propportlist-fix acl2::y))
           (vl-propportlist-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-vl-propportlist-fix-x-under-vl-propport-equiv

    (defthm car-of-vl-propportlist-fix-x-under-vl-propport-equiv
            (vl-propport-equiv (car (vl-propportlist-fix acl2::x))
                               (car acl2::x)))

    Theorem: car-vl-propportlist-equiv-congruence-on-x-under-vl-propport-equiv

    (defthm
       car-vl-propportlist-equiv-congruence-on-x-under-vl-propport-equiv
       (implies (vl-propportlist-equiv acl2::x x-equiv)
                (vl-propport-equiv (car acl2::x)
                                   (car x-equiv)))
       :rule-classes :congruence)

    Theorem: cdr-of-vl-propportlist-fix-x-under-vl-propportlist-equiv

    (defthm cdr-of-vl-propportlist-fix-x-under-vl-propportlist-equiv
            (vl-propportlist-equiv (cdr (vl-propportlist-fix acl2::x))
                                   (cdr acl2::x)))

    Theorem: cdr-vl-propportlist-equiv-congruence-on-x-under-vl-propportlist-equiv

    (defthm
     cdr-vl-propportlist-equiv-congruence-on-x-under-vl-propportlist-equiv
     (implies (vl-propportlist-equiv acl2::x x-equiv)
              (vl-propportlist-equiv (cdr acl2::x)
                                     (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-vl-propport-fix-x-under-vl-propportlist-equiv

    (defthm
         cons-of-vl-propport-fix-x-under-vl-propportlist-equiv
         (vl-propportlist-equiv (cons (vl-propport-fix acl2::x) acl2::y)
                                (cons acl2::x acl2::y)))

    Theorem: cons-vl-propport-equiv-congruence-on-x-under-vl-propportlist-equiv

    (defthm
      cons-vl-propport-equiv-congruence-on-x-under-vl-propportlist-equiv
      (implies (vl-propport-equiv acl2::x x-equiv)
               (vl-propportlist-equiv (cons acl2::x acl2::y)
                                      (cons x-equiv acl2::y)))
      :rule-classes :congruence)

    Theorem: cons-of-vl-propportlist-fix-y-under-vl-propportlist-equiv

    (defthm
     cons-of-vl-propportlist-fix-y-under-vl-propportlist-equiv
     (vl-propportlist-equiv (cons acl2::x (vl-propportlist-fix acl2::y))
                            (cons acl2::x acl2::y)))

    Theorem: cons-vl-propportlist-equiv-congruence-on-y-under-vl-propportlist-equiv

    (defthm
     cons-vl-propportlist-equiv-congruence-on-y-under-vl-propportlist-equiv
     (implies (vl-propportlist-equiv acl2::y y-equiv)
              (vl-propportlist-equiv (cons acl2::x acl2::y)
                                     (cons acl2::x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-vl-propportlist-fix

    (defthm consp-of-vl-propportlist-fix
            (equal (consp (vl-propportlist-fix acl2::x))
                   (consp acl2::x)))

    Theorem: vl-propportlist-fix-of-cons

    (defthm vl-propportlist-fix-of-cons
            (equal (vl-propportlist-fix (cons a x))
                   (cons (vl-propport-fix a)
                         (vl-propportlist-fix x))))

    Theorem: len-of-vl-propportlist-fix

    (defthm len-of-vl-propportlist-fix
            (equal (len (vl-propportlist-fix acl2::x))
                   (len acl2::x)))

    Theorem: vl-propportlist-fix-of-append

    (defthm vl-propportlist-fix-of-append
            (equal (vl-propportlist-fix (append std::a std::b))
                   (append (vl-propportlist-fix std::a)
                           (vl-propportlist-fix std::b))))

    Theorem: vl-propportlist-fix-of-repeat

    (defthm vl-propportlist-fix-of-repeat
            (equal (vl-propportlist-fix (repeat acl2::n acl2::x))
                   (repeat acl2::n (vl-propport-fix acl2::x))))

    Theorem: nth-of-vl-propportlist-fix

    (defthm nth-of-vl-propportlist-fix
            (equal (nth acl2::n (vl-propportlist-fix acl2::x))
                   (if (< (nfix acl2::n) (len acl2::x))
                       (vl-propport-fix (nth acl2::n acl2::x))
                       nil)))

    Theorem: vl-propportlist-equiv-implies-vl-propportlist-equiv-append-1

    (defthm
         vl-propportlist-equiv-implies-vl-propportlist-equiv-append-1
         (implies (vl-propportlist-equiv acl2::x fty::x-equiv)
                  (vl-propportlist-equiv (append acl2::x acl2::y)
                                         (append fty::x-equiv acl2::y)))
         :rule-classes (:congruence))

    Theorem: vl-propportlist-equiv-implies-vl-propportlist-equiv-append-2

    (defthm
         vl-propportlist-equiv-implies-vl-propportlist-equiv-append-2
         (implies (vl-propportlist-equiv acl2::y fty::y-equiv)
                  (vl-propportlist-equiv (append acl2::x acl2::y)
                                         (append acl2::x fty::y-equiv)))
         :rule-classes (:congruence))

    Theorem: vl-propportlist-equiv-implies-vl-propportlist-equiv-nthcdr-2

    (defthm vl-propportlist-equiv-implies-vl-propportlist-equiv-nthcdr-2
            (implies (vl-propportlist-equiv acl2::l l-equiv)
                     (vl-propportlist-equiv (nthcdr acl2::n acl2::l)
                                            (nthcdr acl2::n l-equiv)))
            :rule-classes (:congruence))

    Theorem: vl-propportlist-equiv-implies-vl-propportlist-equiv-take-2

    (defthm vl-propportlist-equiv-implies-vl-propportlist-equiv-take-2
            (implies (vl-propportlist-equiv acl2::l l-equiv)
                     (vl-propportlist-equiv (take acl2::n acl2::l)
                                            (take acl2::n l-equiv)))
            :rule-classes (:congruence))