• Top
    • Documentation
    • Books
    • Recursion-and-induction
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
      • X86isa
        • Program-execution
        • Introduction
        • X86isa-build-instructions
        • Publications
        • Contributors
        • Machine
        • Implemented-opcodes
        • Proof-utilities
          • System-level-marking-view-proof-utilities
          • Non-marking-view-proof-utilities
          • App-view-proof-utilities
          • Subset-p
            • Disjoint-p
            • Pos
            • Member-p
            • No-duplicates-p
            • Common-system-level-utils
            • Debugging-code-proofs
            • General-memory-utils
            • X86-row-wow-thms
          • To-do
          • Concrete-simulation-examples
          • Model-validation
          • Utils
          • Debugging-code-proofs
        • Execloader
        • Axe
      • Testing-utilities
      • Math
    • Proof-utilities

    Subset-p

    Signature
    (subset-p x y) → *
    Arguments
    x — Guard (true-listp x).
    y — Guard (true-listp y).

    Definitions and Theorems

    Function: subset-p

    (defun subset-p (x y)
           (declare (xargs :guard (and (true-listp x) (true-listp y))))
           (let ((__function__ 'subset-p))
                (declare (ignorable __function__))
                (cond ((atom x) t)
                      ((member-p (car x) y)
                       (subset-p (cdr x) y))
                      (t nil))))

    Theorem: subset-p-cdr-x

    (defthm subset-p-cdr-x
            (implies (subset-p x y)
                     (subset-p (cdr x) y))
            :rule-classes ((:rewrite :backchain-limit-lst (0))))

    Theorem: subset-p-cdr-y

    (defthm subset-p-cdr-y
            (implies (subset-p x (cdr y))
                     (subset-p x y))
            :rule-classes ((:rewrite :backchain-limit-lst (0))))

    Theorem: subset-p-cons

    (defthm subset-p-cons
            (implies (subset-p x y)
                     (subset-p (cons e x) (cons e y)))
            :rule-classes ((:rewrite :backchain-limit-lst (0))))

    Theorem: subset-p-reflexive

    (defthm subset-p-reflexive
            (equal (subset-p x x) t))

    Theorem: subset-p-transitive

    (defthm subset-p-transitive
            (implies (and (subset-p x y) (subset-p y z))
                     (subset-p x z)))

    Theorem: subset-p-of-append-1

    (defthm subset-p-of-append-1
            (equal (subset-p (append a b) x)
                   (and (subset-p a x) (subset-p b x))))

    Theorem: subset-p-of-append-2

    (defthm subset-p-of-append-2
            (implies (or (subset-p a x) (subset-p a y))
                     (subset-p a (append x y))))

    Theorem: subset-p-and-append-both

    (defthm subset-p-and-append-both
            (implies (subset-p a b)
                     (subset-p (append e a) (append e b))))

    Theorem: subset-p-of-nil

    (defthm subset-p-of-nil
            (equal (subset-p x nil) (atom x)))

    Theorem: subset-p-cons-2

    (defthm subset-p-cons-2
            (implies (subset-p x y)
                     (subset-p x (cons e y))))

    Theorem: member-p-of-subset-is-member-p-of-superset

    (defthm member-p-of-subset-is-member-p-of-superset
            (implies (and (subset-p x y) (member-p e x))
                     (member-p e y)))

    Theorem: not-member-p-of-superset-is-not-member-p-of-subset

    (defthm not-member-p-of-superset-is-not-member-p-of-subset
            (implies (and (equal (member-p e y) nil)
                          (subset-p x y))
                     (equal (member-p e x) nil)))

    Theorem: subset-p-and-remove-duplicates-equal-1

    (defthm subset-p-and-remove-duplicates-equal-1
            (implies (subset-p x y)
                     (subset-p (remove-duplicates-equal x)
                               y)))

    Theorem: subset-p-and-remove-duplicates-equal-2

    (defthm subset-p-and-remove-duplicates-equal-2
            (implies (subset-p x y)
                     (subset-p x (remove-duplicates-equal y))))

    Theorem: subset-p-and-remove-duplicates-equal-both

    (defthm subset-p-and-remove-duplicates-equal-both
            (implies (subset-p x y)
                     (subset-p (remove-duplicates-equal x)
                               (remove-duplicates-equal y))))