• Top
    • Documentation
      • Xdoc
        • Undocumented
        • Save
        • Defsection
        • Markup
        • Preprocessor
        • Emacs-links
        • Defxdoc
        • Katex-integration
        • Constructors
          • Primitive-constructors
          • Composite-constructors
          • Constructor-preliminaries
          • Trees
            • Tree-to-string
            • Treep
            • Make-tree-dir/&&
              • Make-tree-tag
          • Entities
          • Save-rendered
          • Add-resource-directory
          • Defxdoc+
          • Testing
          • Order-subtopics
          • Save-rendered-event
          • Archive-matching-topics
          • Missing-parents
          • Archive-xdoc
          • Xdoc-extend
          • Set-default-parents
          • Defpointer
          • Defxdoc-raw
          • Xdoc-tests
          • Xdoc-prepend
          • Defsection-progn
          • Gen-xdoc-for-file
        • ACL2-doc
        • Pointers
        • Doc
        • Documentation-copyright
        • Args
        • ACL2-doc-summary
        • Finding-documentation
        • Broken-link
      • Books
      • Recursion-and-induction
      • Boolean-reasoning
      • Projects
      • Debugging
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Testing-utilities
      • Math
    • Trees

    Make-tree-dir/&&

    Construct a non-leaf XDOC tree with a preprocessor directive or a tree concatenation at the root.

    This is for internal use of the XDOC constructor library. Users of this library should use the constructor && for concatenation or constructors for specific directives, e.g. @def.

    See also make-tree-tag.

    Definitions and Theorems

    Function: make-tree-dir/&&

    (defun make-tree-dir/&& (dir/&& trees)
           (declare (xargs :guard (and (keywordp dir/&&)
                                       (tree-listp trees))))
           (cons dir/&& trees))

    Theorem: treep-of-make-tree-dir/&&

    (defthm treep-of-make-tree-dir/&&
            (implies (keywordp dir/&&)
                     (equal (treep (make-tree-dir/&& dir/&& trees))
                            (tree-listp trees))))