
MODEL-CHECKING IN DENSE REAL-TIME

SHANT HARUTUNIAN

1. Introduction

These slides are for a talk based on the paper Model-Checking in Dense Real-

Time, by Rajeev Alur, Costas Courcoubetis, and David Dill. The paper was

published in Information and Computation 104(1):2-34, 1993 (preliminary version

appeared in Proc. 5th LICS, 1990).

A URL to the paper is http://www.cis.upenn.edu/ alur/Lics90D.ps.gz.

The overview of CTL is based on a book chapter titled Model Checking and

the Mu-calculus by E. Allen Emerson. This was published in Proceedings of the

DIMACS Symposium on Descriptive Complexity and Finite Model, N. Immerman

and P. Kolaitis, eds., American Mathematical Society Press, Pages 185-214. A URL

to the book chapter is http://www.cs.utexas.edu/users/emerson/pubs/fmt96q.ps.

2. CTL (Computation Tree Logic)

2.1. Kripke Structure. A Kripke Structure is a triple
(S, L, R), where

S is a set of states.
L is a mapping L : S → 2AP , where AP is a set of

atomic propositions.
R ⊆ S × S is a total relation, ∀s∈S ∃t∈S s.t. (s, t) ∈ R

1

2 SHANT HARUTUNIAN

P
AP={P, Q, R}

Q

P

P,R

Q

S0

S1

S2

S3

S4

Figure 1. Sample Kripke Structure

2.2. Syntax. CTL is inductively defined as follows

S1 A proposition p in AP is a state formula.

S2 If p and q are state formula, then p∧q, ¬p are a state

formula.

S3 If p is a path formula, then Ep and Ap are state for-

mula.

P0 If p and q are state formula, then Xp and pUq are

path formula.

The state formulas generated by S1-S3 define the language
of CTL.

Alternative rules, (replace S3 and P0 with Sa below).

MODEL-CHECKING IN DENSE REAL-TIME 3

Sa If p and q are state formula, then AXp, EXp, ApUq,
and EpUq are state formula.

We use the following abbreviations:

• EFp for E true Up

• AFp for A true Up

• EGp for ¬(A true U¬p)

• AGp for ¬(E true U¬p)

Some sample CTL formulas are as follows:

• EXp

• ApUq

• AG(p ⇒ AFq)

4 SHANT HARUTUNIAN

2.3. Full Path.

• A full path is an infinite sequence of states

s0, s1, s2, . . ., where (si, si+1) ∈ R

• For a full path x = (s0, s1, s2, . . .),

we denote by xi = (si, si+1, si+2, . . .).

2.4. CTL Semantics.

• For a Kripke structure M and a state s0, we write

M, s0 |= p, for a state formula p

• For a Kripke structure M and a full path x, we write

M, x |= p, for a path formula p

We define |= inductively:

S1 M, s0 |= p iff p ∈ L(s0), for p ∈ AP

S2 M, s0 |= p ∧ q iff M, s0 |= p and M, s0 |= q

M, s0 |= ¬p iff it is not the case that M, s0 |= p

S3 M, s0 |= Ep iff ∃ a full path x = (s0, s1, s2, . . .) in M ,

and M, x |= p

M, s0 |= Ap iff ∀ full paths x = (s0, s1, s2, . . .) in M ,

and M, x |= p

P0 M, x |= pUq iff ∃i, M, si |= q and ∀j<i, M, sj |= p

M, x |= Xp iff M, s1 |= p

MODEL-CHECKING IN DENSE REAL-TIME 5

a
AP={a, b}

a

b

S0

S1

S2

S3

Figure 2. Example CTL Model-Checking

We wish to determine for which states of the Kripke struc-
ture the property φ = EaUb holds.

6 SHANT HARUTUNIAN

We use the following algorithm to Model-Check the for-
mula φ=EaUb.

1 let D = ∅
2 for all s ∈ S, if b ∈ L(s), then

add s to D, and

let L(s) = L(s) ∪ {EaUb}
3 H = ∅
4 While H 6= D do

4.1 H = D

4.2 for all s ∈ S\H,

if ∃t (s, t) ∈ R, and t ∈ H, and a ∈ L(s),

then

add s to D, and

let L(s) = L(s) ∪ {EaUb}
5 od

MODEL-CHECKING IN DENSE REAL-TIME 7

We step through the algorithm for the example structure.

2 D = {s3}, and L(s3) = {b} ∪ {EaUb}

3 H = ∅

4.1,i1 H = {s3}

4.2,i1 S\H = {s0, s1, s2}

D = {s3, s2}, (we add s2 to the set)

4.3,i1 L(s2) = {a} ∪ {EaUb},(we add φ to the labels of s2)

4.1,i2 H = {s3, s2}

4.2,i2 S\H = {s0, s1}

D = {s3, s2, s0}, (we add s0 to the set)

4.3,i2 L(s0) = {a} ∪ {EaUb},(we add φ to the labels of s0)

4.1,i3 H = {s3, s2, s0}

4.2,i3 S\H = {s1}

D = {s3, s2, s0}, (nothing is added to the set)

5 Exit loop (we exit the loop since H = D)

8 SHANT HARUTUNIAN

Step 2

Step 4.3, i1 Step 4.3, i3

Step 4.3, i2

a

a
b

S0

S1

S2

S3

EaUb

a

a
b

S0

S1

S2

S3

EaUb
EaUb

a

a
b

S0

S1

S2

S3

EaUb

EaUb
EaUb

a

a
b

S0

S1

S2

S3

EaUb

EaUb
EaUb

Figure 3. Labelled Kripke Structure at various steps in the

Model-Checking Algorithm

3. Model-Checking in Dense Real-Time

3.1. Timed Graph. A tuple (S, µ, Sinit, E, C, π, τ)

S: A finite set of nodes.

Sinit: A node in S designated as the start node.

µ: S → 2AP , where AP is a set of atomic propositions.

E: E ⊆ S × S, the set of edges.

C: Finite set of clocks

– A clock is a variable ranging over the nonnegative

Reals

MODEL-CHECKING IN DENSE REAL-TIME 9

π: E → 2C , indicates which clocks in C are reset along

an edge in E.

τ : A function labelling each edge in E with an enabling

condition built from boolean connectives of atomic

formula of the form

X ≤ c

c ≤ X

where X is a clock and c ∈ N .

S0 S1 S2 S3

x:=0 y:=0 (1 < x < 2)?

(y ≥ 2)?

Figure 4. Sample Timed Graph

10 SHANT HARUTUNIAN

3.2. Clock Assignments.

A clock assignments ν assigns a nonnegative real value
to each clock in C, ν : C → R.

We let Γ(G) denote the set of clock assignments for
a timed graph G.

We use the following notation regarding clock assign-
ments:

ν + t for each y ∈ C, [ν + t](y) = ν(y) + t
[x 7→ t]ν: for each y ∈ C

y 6= x, [x 7→ t]ν(y) = ν(y)
y = x, [x 7→ t]ν(y) = t

3.3. (s, ν)-Run of a timed graph.

An infinite sequence of the following form

(〈s0, ν0, t0〉, 〈s1, ν1, t1〉, 〈s2, ν2, t2〉, . . .)

Initialization: s0 = s, ν0 = ν, and t0 = 0.

Consecution: We have the following requirements

regarding a transition from one component of the run

to the next:

ti+1 > ti.

For edge ei ∈ E, ei = 〈si, si+1〉.
νi+1=[π(ei) 7→ 0](νi + ti+1 − ti).

(νi+ti+1−ti) satisfies the enabling condition, τ(ei).

Progress of time: For any t ∈ R, there exists i s.t.

ti ≥ t.

MODEL-CHECKING IN DENSE REAL-TIME 11

3.4. (s, ν)-Path.

We may derive a (s, ν)-Path from a (s, ν)-Run

ρ : R → S × Γ(G)

ρ(t) = 〈sj, νj + t− tj〉 for tj ≤ t < tj+1

3.5. Example (s, ν)-Run of a timed graph.

r1 (〈s0, [0, 0], 0〉,(where [0, 0] is [ν0(x), ν0(y)])

〈s1, [0, 0.5], 0.5〉,
〈s2, [1, 0], 1.5〉,
〈s3, [1.7, 0.7], 2.2〉,
〈s0, [3.7, 2.7], 4.2〉,
〈s1, [0, 2.8], 4.3〉,
〈s2, [0.1, 0], 4.4〉,
〈s3, [1.1, 1], 5.4〉,
〈s0, [3.1, 3], 4.2 + 3.2i〉,
〈s1, [0, 3.1], 4.2 + 3.2i + 0.1〉,
〈s2, [0.1, 0], 4.2 + 3.2i + 0.2〉,
〈s3, [1.1, 1], 4.2 + 3.2i + 1.2〉), for all i > 0.

ρr1
: ρr1

(4.25) = 〈s0, [3.75, 2.75]〉

12 SHANT HARUTUNIAN

3.6. Example Sequences that are NOT Runs.

seq1

(〈s0, [0, 0], 0〉,
〈s1, [0, 1], 1〉,
〈s2, [3, 0], 4〉)

The above sequence is not a run since it is finite.

seq2

(〈s0, [0, 0], 0〉,

〈s0, [ti, ti], ti〉), where ti =
i∑

k=0

1
2k , for all i ≥ 0.

In the above sequence, for all i, ti < 2.

The above sequence is infinite but it is not a run

because it does not satisfy the progress require-

ment of a run: for all t ∈ R, there exists i where

ti ≥ t.

MODEL-CHECKING IN DENSE REAL-TIME 13

3.7. TCTL (Timed CTL) Syntax.

S1 p ∈ AP is a TCTL formula

S2 If φ1 and φ2 are TCTL formulas, then so are φ1 ∧ φ2
and ¬φ1

S3 If φ1 and φ2 are TCTL formulas, then so are Aφ1U∼cφ2
and Eφ1U∼cφ2

Where ∼∈ {<,≤, =,≥, >} and c ∈ N

The class of formula generated by S1-S3 is the lan-
guage of TCTL.

3.8. TCTL Semantics.

We assume that ρ is a 〈s, ν〉-path of a timed transition
system M based on a timed graph G, and s = 〈s0, ν〉
is a state in S × Γ(G).

S1 M, s |= p, iff p ∈ µ(s0) for a p ∈ AP

S2 M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2
M, s |= ¬φ1 iff it is not the case that M, s |= φ1, for
TCTL formulas φ1 and φ2

S3 M, s |= Eφ1U∼cφ2 iff for some path ρ, for some t ∼ c,
M, ρ(t) |= φ2, and for 0 ≤ t′ < t, M, ρ(t′) |= φ1

M, s |= Aφ1U∼cφ2 iff for all paths ρ, for some t ∼ c,
M, ρ(t) |= φ2, and for 0 ≤ t′ < t, M, ρ(t′) |= φ1

14 SHANT HARUTUNIAN

3.9. Equivalence of Clock Assignments.

For all x ∈ C, let cx be the largest constant with

which x is compared

Two clock assignments are equivalent (ν ∼= ν ′) iff:

– For each x ∈ C, bν(x)c = bν ′(x)c, or both ν(x)

and ν ′(x) are greater than cx

– For each pair x, y ∈ C,

s.t. ν(x) ≤ cx and ν(y) ≤ cy,

1. fract(ν(x)) ≤ fract(ν(y)) iff

fract(ν ′(x)) ≤ fract(ν ′(y))

2. fract(ν(x)) = 0 iff fract(ν ′(x)) = 0

Our goal is to show that for equivalent clock assign-
ment ν and ν ′, a TCTL formula φ, and s ∈ S, M, 〈s, ν〉 |=
φ iff M, 〈s, ν ′〉 |= φ.

MODEL-CHECKING IN DENSE REAL-TIME 15

1 2 3

1

2

x

y

Cx=2
Cy=1

Figure 5. Equivalence Regions of Clocks {x, y}

3.10. Successor Region.

Let α be an equivalence class of the clock assignments
(Γ(G)).

We denote that β is an equivalence class that is the
successor of α, β = Succ(α), iff:

For a positive t ∈ R, and for ν ∈ α, (ν + t) ∈ β, and
for all t′ < t, (ν + t′) ∈ α ∪ β.

16 SHANT HARUTUNIAN

x = 0, y = 0

x = 0, 0 < y < 1

x = 0, y =1

x = 0, 1 < y < 2

x = 0, y = 2

x = 0, y > 2

0 < x < 1, y = 0

0 < x < 1, y =1

0 < x < 1, y = 2

0 < x < 1, y > 2

x = 1, y = 0

x = 1, 0 < y < 1

x = 1, y =1

x = 1, 1 < y < 2

x = 1, y = 2

x = 1, y > 2

x > 1, y = 0

x > 1, 0 < y < 1

x > 1, y =1

x > 1, 1 < y < 2

x > 1, y = 2

x > 1, y > 2

0 < x < 1, 0 < y < 1, f(x) < f(y) 0 < x < 1, 0 < y < 1, f(x) = f(y) 0 < x < 1, 0 < y < 1, f(x) > f(y)

0 < x < 1, 1 < y < 2, f(x) < f(y) 0 < x < 1, 1 < y < 2, f(x) = f(y) 0 < x < 1, 1 < y < 2, f(x) > f(y)

f(x) = fract(x)

Figure 6. Example-1: Successor Regions (cx = 1, cy = 2)

MODEL-CHECKING IN DENSE REAL-TIME 17

x = 0, y = 0

x = 0, 0 < y < 1

x = 0, y =1

x = 0, 1 < y < 2

x = 0, y = 2

x = 0, y > 2

0 < x < 1, y = 0

0 < x < 1, 0 < y < 1, f(x) < f(y)

0 < x < 1, y =1

0 < x < 1, y = 2

0 < x < 1, y > 2

0 < x < 1, 0 < y < 1, f(x) = f(y) 0 < x < 1, 0 < y < 1, f(x) > f(y)

0 < x < 1, 1 < y < 2, f(x) < f(y) 0 < x < 1, 1 < y < 2, f(x) = f(y) 0 < x < 1, 1 < y < 2, f(x) > f(y)

x = 1, y = 0

x = 1, 0 < y < 1

x = 1, y =1

x = 1, 1 < y < 2

x = 1, y = 2

x = 1, y > 2

x > 1, y = 0

x > 1, 0 < y < 1

x > 1, y =1

x > 1, 1 < y < 2

x > 1, y = 2

x > 1, y > 2

f(x) = fract(x)

Figure 7. Example-2: Successor Regions (cx = 1, cy = 2)

18 SHANT HARUTUNIAN

x = 0, y = 0

x = 0, 0 < y < 1

x = 0, y =1

x = 0, 1 < y < 2

x = 0, y = 2

x = 0, y > 2

0 < x < 1, y = 0

0 < x < 1, 0 < y < 1, f(x) < f(y)

0 < x < 1, y =1

0 < x < 1, y = 2

0 < x < 1, y > 2

0 < x < 1, 0 < y < 1, f(x) = f(y) 0 < x < 1, 0 < y < 1, f(x) > f(y)

0 < x < 1, 1 < y < 2, f(x) < f(y) 0 < x < 1, 1 < y < 2, f(x) = f(y) 0 < x < 1, 1 < y < 2, f(x) > f(y)

x = 1, y = 0

x = 1, 0 < y < 1

x = 1, y =1

x = 1, 1 < y < 2

x = 1, y = 2

x = 1, y > 2

x > 1, y = 0

x > 1, 0 < y < 1

x > 1, y =1

x > 1, 1 < y < 2

x > 1, y = 2

x > 1, y > 2

f(x) = fract(x)

Figure 8. Example-3: Successor Regions (cx = 1, cy = 2)

MODEL-CHECKING IN DENSE REAL-TIME 19

x = 0, y = 0

x = 0, 0 < y < 1

x = 0, y =1

x = 0, 1 < y < 2

x = 0, y = 2

x = 0, y > 2

0 < x < 1, y = 0

0 < x < 1, 0 < y < 1, f(x) < f(y)

0 < x < 1, y =1

0 < x < 1, y = 2

0 < x < 1, y > 2

0 < x < 1, 0 < y < 1, f(x) = f(y) 0 < x < 1, 0 < y < 1, f(x) > f(y)

0 < x < 1, 1 < y < 2, f(x) < f(y) 0 < x < 1, 1 < y < 2, f(x) = f(y) 0 < x < 1, 1 < y < 2, f(x) > f(y)

x = 1, y = 0

x = 1, 0 < y < 1

x = 1, y =1

x = 1, 1 < y < 2

x = 1, y = 2

x = 1, y > 2

x > 1, y = 0

x > 1, 0 < y < 1

x > 1, y =1

x > 1, 1 < y < 2

x > 1, y = 2

x > 1, y > 2

f(x) = fract(x)

Figure 9. Example-4: Successor Regions (cx = 1, cy = 2)

20 SHANT HARUTUNIAN

3.11. Clock Regions vs. Augmented Clock Regions.

To the clock set C, add a clock x, not in C, that is not
reset by any edge in the timed graph G. The clock
regions resulting from the addition of x are called the
augmented clock regions.

We denote by cx the largest integer constant appear-
ing in the TCTL formula.

The augmented clock regions refine a clock region
due to the addition of the extra clock x.

Example clock region . . .
{0 < y < 1}

. . . and its augmented clock regions (assume cx = 1):
{0 < y < 1, x = 0}, {0 < y < 1, 0 < x < 1},
{0 < y < 1, x = 1}, {0 < y < 1, x > 1}

We write C∗ to represent the clock set with the added
clock x.

We denote by [ν]∗ the equivalence class with respect
to the equivalence relation for clock assignments with
clocks in C∗.

MODEL-CHECKING IN DENSE REAL-TIME 21

3.12. Region Graph.

The region graph consists of vertices V that is the
product of the set of augmented regions with the
nodes S of timed graph G.

The edges of the region graph are defined as follows;

Edges representing the passage of time: Each
vertex 〈s, α〉, where α is not an end class, has an
edge to 〈s, succ(α)〉

Edges representing transitions in G: Each ver-
tex 〈s, α〉 for each edge e = 〈s, s′〉, has an edge to
〈s′, [[π(e) 7→ 0]ν]〉, provided that

i) α is not a boundary class*, and

ii) Either ν ∈ α or ν ∈ succ(α), and

iii) ν satisfies the enabling condition τ(e).

* A boundary class α is such that for a positive
real t and all ν in α, ν + t is not equivalent to
ν.

Examples:
{x = 0, 1 < y < 2},
{x = 1, y = 2}

where cx = 1, and cy = 2.

22 SHANT HARUTUNIAN

x = 0, y = 0

x = 0, 0 < y <1

x = 0, y =1

x = 0, y > 1

0 < x < 1, y = 0

0 < x < 1, 0 < y < 1,
f(x) < f(y)

0 < x < 1, y =1

0 < x < 1, 0 < y < 1,
f(x) = f(y)

0 < x < 1, 0 < y < 1,
f(x) > f(y)

0 < x < 1, y > 1

x = 1, y = 0

x = 1, 0 < y< 1

x = 1, y =1

x = 1, y > 1

x > 1, y = 0

x > 1, 0 < y < 1

x > 1, y =1

x > 1, y > 1

f(x) = fract(x)

x = 0, y = 0

x = 0, 0 < y < 1

x = 0, y =1

x = 0, y > 1

0 < x < 1, y = 0

0 < x < 1, 0 < y < 1,
f(x) < f(y)

0 < x < 1, y =1

0 < x < 1, 0 < y < 1,
f(x) = f(y)

0 < x < 1, 0 < y < 1,
f(x) > f(y)

0 < x < 1, y > 1

x = 1, y = 0

x = 1, 0 < y < 1

x = 1, y =1

x = 1, y > 1

x > 1, y = 0

x > 1, 0 < y <1

x > 1, y =1

x > 1, y > 1

S0 S1

S0 S1

y:=0

(y > 1)?, y := 0

(y < 1)?

(y ≤ 1)?

Graph only shows edges to vertices reachable from < S0, [x = y = 0] >

Figure 10. Timed Graph-1 and its Region Graph (cx = 1, cy = 1)

MODEL-CHECKING IN DENSE REAL-TIME 23

x = 0, y = 0

x = 0, 0 < y < 1

x = 0, y =1

x = 0, y > 1

0 < x < 1, y = 0

0 < x < 1, 0 < y < 1,
f(x) < f(y)

0 < x < 1, y =1

0 < x < 1, 0 < y < 1,
f(x) = f(y)

0 < x < 1, 0 < y < 1,
f(x) > f(y)0 < x < 1, y > 1

x = 1, y = 0

x = 1, 0 < y < 1

x = 1, y =1

x = 1, y > 1

x > 1, y = 0

x > 1, 0 < y < 1

x > 1, y =1

x > 1, y >1

f(x) = fract(x)

x = 0, y = 0

x = 0, 0 < y < 1

x = 0, y =1

x = 0, y > 1

0 < x < 1, y = 0

0 < x < 1, 0 < y < 1,
f(x) < f(y)

0 < x < 1, y =1

0 < x < 1, 0 < y < 1,
f(x) = f(y)

0 < x < 1, 0 < y < 1,
f(x) > f(y)

0 < x < 1, y > 1

x = 1, y = 0

x = 1, 0 < y < 1

x = 1, y =1

x = 1, y > 1

x > 1, y = 0

x > 1, 0 < y <1

x > 1, y =1

x > 1, y > 1

S0 S1

S0 S1

y:=0

(y < 1)?, y := 0

(y < 1)?
(y ≥ 1)?

Graph only shows edges to vertices reachable from < S0, [x = y = 0] >

Figure 11. Timed Graph-2 and its Region Graph (cx = 1, cy = 1)

24 SHANT HARUTUNIAN

3.13. Fair Paths in the Region Graph.

• A path through the region graph is an infinite se-
quence of vertices in the region graph 〈v1, v2, v3, . . .〉,
such that vi has an edge to vi+1.

• A path is fair if every clock in C∗ is either reset infin-
itely often or is eventually always increasing.

• Hence, for all fair paths β through the region graph,
for each clock y ∈ C∗, infinitely many vertices along
the path β satisfy either y = 0, or y > cy.

• In labelling the region graph, for each vertex v, for
each clock y ∈ C∗, label vertex v with

py=0 if y = 0 in v

py>cy
if y > cy in v

• Using Fair CTL, with clock set C∗ = {x, y, z}, the
fairness condition would be

∞
F(px=0 ∨ px>cx

) ∧
∞
F(py=0 ∨ py>cy

) ∧
∞
F(pz=0 ∨ pz>cz

),

Where
∞
F x denotes that the proposition x is true in-

finitely often along a path.

MODEL-CHECKING IN DENSE REAL-TIME 25

3.14. A Graph Labelling Algorithm.

For vertices in the region graph, every subscript ∼ c
appearing in TCTL formula φ, label the vertex with
p∼c iff at vertex 〈s, [ν]∗〉, ν |= x ∼ c.

Also label vertices with Pb if a vertex represents a
boundary class.

For a formula of the form EpU∼cq, where p and q are
propositions, label v = 〈s, [ν]∗〉† with φ iff:

For some fair path starting at 〈s, [[x 7→ 0]ν]∗〉,

Has a prefix (v1, v2, v3, . . .) such that

• For each i ≤ n, vi is labelled with p, and

• vn is labelled with q and

• vn is labelled with p ∼ c, and

• vn is either labelled with pb or p.

† When labelling a vertex 〈s, [ν]∗〉 with φ, where
[ν]∗ is a refinement of a clock region α, we also
label 〈s, [ν ′]∗〉 with φ, where [ν ′]∗ (6= [ν]∗) is a re-
finement of the same clock region α.

26 SHANT HARUTUNIAN

S0 S1 S2

y:=0
(y = 1)?

(z < 1)?, z := 0

(y < 1)?

S0
x = y = z = 0

S0
0 < x = y < 1

S0
x = y = 1

S0
x = y > 1

S1
y = 0, x < 1

S1
y = 0, x = 1

S1
0 < y < x < 1

S1
0 < y < x = 1

S1
0 < y < 1 < x

S2
x > 1, y > 1

S2
y = 1 < x

S1
x > 1, y > 1

S1
y = 1 < x

0

1

2

3

4

5

6

7

8

9

10

11

12

p

p

p

p

q

q

q

q

q

q

q

x = z, holds at all vertices.
Graph only shows vertices reachable from < S0, [x = y = z = 0] >

(z ≤ 1)?

p q

Figure 12. Example TCTL Model-Checking

MODEL-CHECKING IN DENSE REAL-TIME 27

3.15. A Procedure Using Fair CTL to Model-Check
a Region Graph.

• Remove vertices, and associated edges, from the re-
gion graph that do not have an outgoing edge (repeat
this step until all such vertices are removed).

• For vertices in the region graph, every subscript ∼ c
appearing in TCTL formula φ, label the vertex with
p∼c iff at vertex 〈s, [ν]∗〉, ν |= x ∼ c.

• Also label vertices with Pb if a vertex represents a
boundary class.

• For a TCTL formula φ of the form

Eφ1U∼cφ2,

we use the Fair CTL formula φ′ of the form

Eφ1Upc ∧ φ2 ∧ (pb ∨ φ1)

• We assume that all TCTL subformulas φ1 and φ2 of
TCTL formula φ have already been checked using this
procedure. (i.e., the graph is already labelled with φ1
and φ2)

• For each vertex v, for each clock y ∈ C∗, label vertex
v with

py=0 if y = 0 in v

py>cy
if y > cy in v

28 SHANT HARUTUNIAN

• Using Fair CTL, with clock set C∗, the fairness con-
dition is

∧y∈C∗

∞
F(py=0 ∨ py>cy

)

• We assume that the Fair CTL Model-Checker returns
the set of vertices Sφ′ that satisfy the given formula
φ′, but does not label the graph with φ′.

• Remove those vertices from Sφ′ where x 6= 0.

• For the vertices that remain in Sφ′, label each vertex
with φ.

• When labelling a vertex 〈s, [ν]∗〉 with φ, where [ν]∗ is
a refinement of a clock region α, we also label 〈s, [ν ′]∗〉
with φ, where [ν ′]∗ (6= [ν]∗) is a refinement of the same
clock region α.

Department of Electrical & Computer Engineering University of Texas at Austin

E-mail address: shant@mail.utexas.edu

