The DE Language

Erik Reeber
6/30/04

Overview

Introduction & Motivation
Examples

Implementation and Static Checking
Overview

Verification & Tool Flow
Verification Example

Summary & Conclusion

Introduction

 DE is a Hardware Description Language
— Simple FSM semantics

 Embedded in ACL.2

e Predecessor: DUAL-EVAL
— FM9001 proof
— No combinational loops
— Primitives are modules
— No types

Motivation

* Need to get design into ACL?2

— Advantages to embedded approach:
* Closer to actual design
e Can verify optimization and verification tools
e Can write and verify generation functions

e Need Finite Decision Procedures
— Type system
* Explore HDL design

— Simple semantics
— May put specification in the code

Example 1: XNOR

‘' (xnor2
(ins (x 2) (y 2))
(outs (g 2))
(wires (xq 2))
(occs
(xor-occ (xq)
(bufn 2)
((xor 2 x y)))
(xnor—-occ (q)
(bufn 2)
((not 2 xq))))

e No one would build this
module in DE; it 1s too simple.

e Declare widths of 1nputs,
outputs, and wires to be 2.

 An occurrence 1S an
instantiation of a module. Bufn
plays the roll of an assignment.

e Inputs are ACL2 expressions
using a small set of primitives.

e No combinational loops in the
occurrence list.

Modeling a Synopsis MUX

' (any—mux—n-w
(params n w)
(outs (g w))
(ins (sel n) (x (expt 2 w)))
(occs
(occ (q)
((lambda (n w sel x)
(list
'nil
(s-m—n-w n w sel x)))
n w)

(sel x)))))

Synopsis has a built-in ~ (2”n:1)
* w mux module that 1s
sometimes used in TRIPS

We implement an ACL2 version
named s-m-n-w.

We add this function to our list of
allowed primitives.

Lambda functions need the
parameters and return the state as
well as the outputs.

We implement the module with
parameterized bit widths.

Example 2: A simple ALU

'"(simple—ALU

(params w)
(outs (g w))
(ins (op 2) (x w) (y w))

(wires (m—in (* (expt 2 2) w)))

(occs
(op0 ((m-in O (1- w))) (bufn w) ((or w x vy)))
(opl ((m-in w (1- (* 2 w)))) (bufn w) ((and w x y)))
(op2 ((m-in (* 2 w) (1- (* 3 w)))) (bufn w) ((xor w x vy)))
(op3 ((m-in (* 3 w) (1= (* 4 w)))) (bufn w)
((not (and w x y))))
(alu (q)

(any—mux-n-w 2 w)

(op m-in)))))

Example 2 Comments

e Using parameters to generalize a little bit

— Need actual parameters to synthesize

e Using a lot of buffers and ACL2 functions

— This 1s a lot more similar to the TRIPS style
than using only module instantiations

An n bit register

‘(reg-n
(type primitive)
(params n)
(ins (x n))
(outs (g n))
(sts st)
(st-decls (st n))
(occs
(st (q)
((lambda (st x)
(list x st)))

(st x))))

* Declared to be a primitive: allowed
to use state like a wire, but not
allowed to 1nstantiate modules

e State st 1s declared twice. The first
declaration means it takes state, the
second means that it 1s finite and a
bit-vector.

Example 3: Accumulator

‘(accumulator
(params n)
(ins (op 2) (x n))
(outs (g n))
(sts st)
(wires (y n))
(occs

(st (y)

(simple—-ALU n)

(op x vy))))

Here we use the ALU
and the register to build
an accumulator

The state 1s only
declared once, and it has
no type.

State 1s passed
automatically to register,
by virtue of its instance
name.

The “loop” here 1s not
combinational

Example 4: Memory Block

‘(memory-block

e Here we intend to model a large
block of memory.

(type primitive)

(params n w)

(ins (wr w) e State 1s not implemented as a bit
(wr—en 1) vector, and may not be finite.
(addr n))

e ACL2 functions mem-b-ns and
mem-b-q are added as next state
and output primitives.

(outs (g w))

(sts st)

(occs

(st (q)
((lambda (n w st wr wr—-en addr)
(list (mem-b-ns n w st wr wr—en)
(mem-b-g n w st addr)) n w)

(st wr wr—en addr))))

The SE and DE functions

The semantics of DE are implemented as a single-pass
output evaluator, SE, and a dual-pass state evaluator, DE.

These functions take in the following arguments: flg,
params, 1ns, sts, env, netlist.

Example call and output:
> (se ‘flg ‘simple—-ALU ‘' (2)
‘'((bv—-const 2 0) (bv-const 2 1)) (bv—-const 2 2))
‘() (simple—-ALU-net))
((t t))

Static Checking

e syntaxp, given fn and netlist checks the following
of fn and 1ts components:
— Is an alist with outs and occs
— Each occ has the proper format.

— Declarations in outs, ins, sts, and st-decls properly
formatted.

— No duplicate names
— Names 1n sts occur in the occs entry (once)

— All wires that are referenced are declared
— Etc.

Static Checking (continued)

e Syntax-with-params, given fn, netlist, and
params checks the following:
— Every wire has constant width

— Instance wire widths correspond with module
declarations

— Each bit of each wire 1s defined exactly once
— A wire 1s completely defined before any part of it 1s
used

 We also have well-formed-inputs and well-
formed-finite-state functions.

Verification and Tool Flow

Design & Test:

Get into ACL.2:

Simplify:

Prove:

C Model

Verilog

DE

P

—

ACL2 Model

/

Abstract ACL2 Model

v

ACL2 Specification

Test Code

Verification Example -- Verilog

module dt_lsg dsn_valid_blocks
(valid_block_mask, youngest, oldest, empty);
output [7:0] wvalid_block_mask;
input [2:0] youngest;
input [2:0] oldest;

input empty;
wire [7:0] youngest_set_up, oldest_set_down;
wire youngest_1lt_oldest;

assign valid_block_mask =
empty °? 8'd0
youngest_1lt_oldest ? youngest_set_up | oldest_set_down
youngest_set_up & oldest_set_down;
endmodule // dt_lsg _dsn

Verification Example -- DE

(add-module

(quote (|dt_lsg dsn_valid_blocks]|

(OUTS (|valid block_mask]| 8))

(INS (]youngest| 3)

(|loldest | 3)
(lemptyl| 1))

(WIRES (]|youngest_set_up| 8)
(|oldest_set _down| 8)
(|youngest_1t_oldest| 1))

(OCCsS

(ASSIGN_3 ((|valid_block_mask| 0 7))

(BUFN 8)

((BV-IF (G |empty| 0 0)
(BV-CONST 8 0)

(BV-IF (G |youngest_lt_oldest| 0 7)

(BV-OR 8 (G

(BV-AND 8 (G

(G

| youngest_set_up| 0 7)
(G |oldest_set_down|

|oldest set down|

0 7))

| youngest_set_up| 0 7)

0 7))))))))))

Verification Example — ACL2

(defun |acl2-dt_1sg_valid_blocks| (|youngest| |oldest| |empty])

(let* (e wee e
(lvalid_block_mask|
(BV-IF (G |empty]| 0 0)
(BV-CONST 8 0)
(BV-IF (G |youngest_1lt_oldest| 0 7)
(BV-OR 8 (G |youngest_set_up| 0 7)
(G |oldest_set_down| 0 7))
(BV-AND 8 (G |youngest_set_up]| 0 7)
(G |oldest_set_down| 0 7))))))
(list |valid_block_mask])))

Verification Example — Abstract ACL2

(defun make_valid_mask (n youngest oldest ans)
(cond ((zp n) ans)
((car (bv-eg 3 youngest oldest))
(bv-or 8 ans (bv-1lshift 8 3 (bv-const 8 1) oldest)))
(t
(make_ _wvalid mask
(1- n) youngest (increment 3 oldest)
(bv—-or
8 ans (bv-1lshift 8 3 (bv-const 8 1) oldest))))))

(defun valid_blocks (youngest oldest empty)
(if (car empty)
(bv—-const 8 0)
(make_valid_mask 8 youngest oldest (bv-const 8 0))))

Verification Example (theorems)

(defthm dt_lsg dsn_valid_blocks—-se-rewrite
(implies (|dt_lsg dsn_valid_blocks—&| netlist)
(equal
(se flg '|dt_1lsg_dsn_valid_blocks| params
ins st env netlist)
(lacl2-dt_1sg valid_blocks|
(get-value flg ins env)
(get-value flg (cdr ins) env)
(get-value flg (cddr ins) env))))
:hints (("Goal" :in-theory
(e/d (|dt_lsg dsn_valid_blocks—EXPAND |
|dt_1sg_dsn_valid_blocks—&|)
()))))

(thm (car (bv-eqg 8 (valid_blocks youngest oldest empty)
(car (lacl2-dt_1sg valid_blocks|
youngest oldest empty))))
:hints (("Goal" :sat nil)))

Current System Summary

e Current System:
— DE semantics and static checkers
— Verilog to DE compiler
— First-pass rewriting book
— SAT decision procedure integrated with (my) ACL2

e (Near-term) Plans:
— Verilog to low-level ACL2 compiler
— Improved rewriting book
— SAT-based Equivalence Checker
— Proof of larger TRIPS components

Issues

Combining the finite theorems with ACL?2 1s still a
bit cumbersome.

Is Embedded the right approach?
Is SAT 1n the right place?
Can we make DE more compact?

Should we put more power in the parameters?

— Could we then eliminate the need for defining ACL2
functions for each Synopsis primitive?

Are we handling state right?
Is the type system too limiting?

Conclusion

DE 1s a simple HDL embedded in ACL2.
We can implement complex hardware 1n it.
We can quickly verity small hardware 1n it.

We hope to verify complex hardware using
a hierarchical approach.

It now has a strong parameterized type
system.

