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Overview of the Work

We modeled a realistic JVM to formalize the semantics
of Java bytecode programs
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Overview of the Work

We modeled a realistic JVM to formalize the semantics
of Java bytecode programs

We proved simple properties of single threaded Java
programs

We hold that for Java verification our approach provides
better assurance than the “shallow” embedding
approach

We show that, for single threaded program at least, the
complexity of deep embedding approach can be
effectively managed with automatic theorem proving
support
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Java Program Verification Process

 JVM

 jvm2acl2
JVM model

javac  bcv
bytecode 
interpreter

Demo.java
End states/Traces/Proofs

(defconst *Demo* ....)

Validation tests

BCV

(JSR139)
Yes/No

Defensive JVM

extra  checkings

Validation/Formal Proofs

End states/Traces/Proofs

Demo.class End states/Traces

ACL2 World: 

Actual Java World

 programs + machine models

+ specifications/proofs  

The Framework
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Actual Java World

2. Map into the formal world

1. Submit to javac
4. Check spec. 

(topStack (run ...)) = (int−fix (! n))

5. Prove it

3. Spec: (topStack (run "Demo" ...)) =  (! n)
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Java Program Verification Process
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JVM model
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bytecode 
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Demo.java
End states/Traces/Proofs

(defconst *Demo* ....)

Demo.class End states/Traces

Actual Java World

2. Map into the formal world

1. Submit to javac

3. Spec: (topStack (run "Demo" ...)) =  (! n)

5. Prove it

4. Check spec. 
(topStack (run ...)) = (int−fix (! n))

4. Check the specification
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Java Program Verification Process

 JVM

 jvm2acl2
JVM model

javac  bcv
bytecode 
interpreter

Demo.java
End states/Traces/Proofs

(defconst *Demo* ....)

Demo.class End states/Traces

Actual Java World

2. Map into the formal world

1. Submit to javac

3. Spec: (topStack (run "Demo" ...)) =  (! n)

4. Check spec. 

(topStack (run ...)) = (int−fix (! n))

5. Prove it

5. Just prove it
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Executable JVM Model in ACL2

Demo: JVM Model and Programs in Execution
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Formalization: “Deep” or “Shallow”

We used the “deep embedding” approach
Keep the form of the original bytecode program
Formalize the semantics of the language as
opposed to assign meanings to specific programs
Formalize the properties of programs as assertions
on execution traces and states

We did not use the “shallow embedding” approach
Rephrase each bytecode program case by case
Nor write a “compiler” that translates programs
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Why Model a JVM?

Main criticism: complexity

Considerations:

We are more confident in correctly modeling a JVM
than rephrasing Java programs case by case. A shallow

embedding maybe more suitable for descriptions in a simpler language, such as

netlists descriptions for digital circuits but not for Java programs
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Why Model a JVM?

Main criticism: complexity

Considerations:

We are more confident in correctly modeling a JVM
than rephrasing Java programs case by case. A shallow

embedding maybe more suitable for descriptions in a simpler language, such as

netlists descriptions for digital circuits but not for Java programs

We are more confident in properties directly formulated
as assertions on execution traces and states.

We are interested in studying properties of the JVM and
the bytecode language.

We have “automatic” mechanical theorem proving
support.
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Theorem Proving Support

Executable: intuitive for defining operational semantics

ACL2 “learns” from established theorems
Non-trivial efforts in solving a brand-new problem.
We need about 300 lemmas for proving that a
7-instruction ADD1 program adds one to its local
variable.
Greatly reduced efforts in solving similar problems.
We need 20 extra lemmas for proving a
15-instruction straight line program that manipulates
locals and operand stack.
Orthogonality of different operations can be
captured.
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“Factorial computes factorial”

(defthm factorial-computes-factorial

(implies (and (poised-to-invoke-fact s)

(wff-state-regular s)

(wff-thread-table-regular (thread-table s))

(no-fatal-error? s)

(integerp n)

(<= 0 n)

(intp n)

(equal n (topStack s)))

(equal (simple-run s (fact-clock n))

(state-set-pc (+ 3 (pc s))

(pushStack (int-fix (! n))

(popStack s))))))
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Difficulties in Proofs

The “frame” problem — what does not change
Identify equivalence relations
Prove that operations preserve equivalence relations
Express desired properties as properties on
equivalence classes
Prove congruence rules about operations

Identify the implicit assumptions about the domain.
Example: next-inst
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Related Work

Combine rewrite engine and operational semantics for:

Verification condition generation
— without a verification condition generator
See Inductive Assertions and Operational Semantics, CHARME’03.

“Shallow embedding”
— without a compiler
The idea is to use the symbolic execution to reduce bytecode programs to their “effect”

functions that directly modify the states.
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Other Work: Verify a JVM

 JVM

 jvm2acl2
JVM model

javac  bcv
bytecode 
interpreter

Demo.java
End states/Traces/Proofs

(defconst *Demo* ....)

End states/Traces/Proofs

Validation/Formal Proofs

Demo.class End states/Traces

Validation tests

BCV

(JSR139)

Defensive JVM

extra  checkings

Yes/No

Verify the JVM and its bytecode verifier
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Conclusion

Formalized the Java bytecode language by modeling a
realistic JVM

Proved properties of simple Java programs

Gained a better assurance via:
Direct formulation of simple facts
Machine checked derivation steps
Validation tests that one can execute

Managed the complexity with support from ACL2

We are working on the verification of a JVM with its
bytecode verifier

Question?
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Other Demos

“Shadow embedding” without a compiler

Example: reasoning about next-inst

Example: Orthogonality captured by ACL2 theorems
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