- N

M echanically checked proof on
Dijkstra’'sshortest path algorithm

Qiang Zhang
J Moore
October 13, 2004

| ntroduction

- N

Dijkstra’s shortest path algorithm: a classical algorithm
to find the shortest path between two vertices in a finite
graph with non-negative weighted edges

Directed Finite Graph with non-negative weighted
edges

#® Correctness of the algorithm: "if both vertices a and b
are in the graph g, then the algorithm does return a
shortest path from a to b in the graph g"

o |

Oct. 13, 2004 — p.2/42

Algorithm
-

. A(U) <= 0; for each vertex t other than u in V, A\(t) <= oc;
and T < V;

. Let s be avertexin T such that A(s) is minimum;
. Ifs =v, stop (or If T ={}, stop);

. Forevery edge fromstot, ifte T and
A(t) > A(S) + wt(st), then A(t) < A(S) + Wt(st);

. T« T-—{s} and go to step 2.

|

Oct. 13, 2004 — p.3/42

| I

Formalization

-

Graph representation: an association list ((ul (vl . wl)
(V2.w2)..) ..)

path table pt: ((u . path-from-a-to-u) ...)

Function returns the result

(defun dijkstra-shortest-path (a b Q)
(let ((p (dsp (all-nodes g) (list (cons a (list a))) Qg)))

(path b p)))

Function maintains the iteration

(defun dsp (ts pt Q)
(cond ((endp ts) pt)
(t (let ((u (choose-next ts pt g)))
(dsp (del u ts)
(reassign u (neighbors u g) pt g)

9)))))

|

Oct. 13, 2004 — p.4/42

Formalization

- N

1. Let ts be initially all vertices in g;
2. Let pt be initially (list (cons a (list a)));

3. (path n pt) returns the already discovered path
associated with n in pt, i.e. initially (path a pt) = (list a)
and (path n pt) = nil for all other vertices; and (d n pt g)
returns the weight of (path n pt) in g. It is convenient to
use NIL as "Infinity";

4. Repeat until ts is empty:

(a) Choose u in ts such that (d u pt g) iIs minimal;

(b) for each edge from u to some neighbor v with weight
wt, if (d v ptg) > (d u pt g) + wt, then reassign (path v
pt) to be (append (path u pt) (list v));

L (c) Delete u from ts. J

Oct. 13, 2004 — p.5/42

Traditional Proof
L -

#® When a vertex u is chosen by step 4(a), the path
associated with u in the path table is the shortest path
from the start vertex to u in the graph

#® When a vertex u is chosen by step 4(a), for any vertex v
chosen after u, the path associated with v in the path
table is the shortest path from the start vertex to v
through the vertices(i.e. the internal vertices), which are
chosen before u

o |

Oct. 13, 2004 — p.6/42

M echanical Proof

-

® Main Theorem:

(deft hm mai n-t heorem
(inplies (and (nodep a Q)
(nodep b Q)
(graphp g))
(shortest-path a
b
(dijkstra-shortest-path a b Q)

9)))

® |[nvariant:

(defun inv (ts pt g a)
(let ((fs (conp-set ts (all-nodes g))))
(and (prop-ts-node a ts fs pt g)
(prop-fs-node a fs fs pt Q)
(paths-froms-table a pt g))))

o |

Oct. 13, 2004 — p.7/42

Function details

- N

(all-nodes g) returns all the nodes in the graph g

(defun all-nodes (Q)
(cond ((endp g) nil)
(t (cons-set (caar Q)
(nmy-union (strip-cars (cdar g))

(all-nodes (cdr g)))))))

(nodep n g) returns t iff a is a vertex in the graph g

(defun nodep (n g) (memn (all-nodes Qg)))

(graphp g) returns tiff g is a legal graph:

(defun graphp (g)

(cond ((endp g) (equal g nil))
((and (consp (car Q))

(edge-wei ghtsp (cdar qg)))
(graphp (cdr g)))
(t nil)))

o |

Oct. 13, 2004 — p.8/42

Function details

B -

(edge-weightsp Ist) returns t iff Ist is a legal list of edges

(defun edge-wei ghtsp (I st)
(cond ((endp Ist) (equal Ist nil))
((and (consp (car |st))
(rationalp (cdar Ist))
(<= 0 (cdar Ist))
(not (assoc (caar Ist) (cdr Ist))))
(edge-wei ghtsp (cdr Ist)))

(t nil)))

#® (comp-set ts s) returns the set deleting ts from s

(defun conp-set (ts s)
(if (endp s) nil
(if (mem(car s) ts)
(conp-set ts (cdr s))

L___ (cons (car s) (conp-set ts (cdr s)))))) ___J

Oct. 13, 2004 — p.9/42

Function details

-

® (shortest-path a b p g) returns t iff p Is the shortest path
fromatobing
(defun-sk shortest-path (a b p Q)

(forall path (inplies (path-fromto path a b g)
(shorter p path g))))

-

(paths-from-s-table s pt g) returns t iff for any path in pt,
It Is associated with a key vertex u, then the path is a
path fromstouing

(defun paths-froms-table (s pt Q)
(if (endp pt) t
(and (if (not (cdar pt)) t
(path-fromto (cdar pt) s (caar pt) Qg))
(paths-froms-table s (cdr pt) g))))

o |

Oct. 13, 2004 — p.10/42

Function details

-

® (prop-ts-node a ts fs pt Q)

(defun prop-ts-node (a ts fs pt Q)
(i1f (endp ts) t
(and (shorter-all-inter-path a (car ts)
(path (car ts) pt) fs g)
(all-but-last-node (path (car ts) pt) fs)
(prop-ts-node a (cdr ts) fs pt g))))

(all-but-last-node p fs)
(defun all-but-last-node (p fs)
(if (endp p) t
(if (endp (cdr p)) t
(and (nmem (car p) fs)
(all-but-last-node (cdr p) fs)))))

o |

Oct. 13, 2004 — p.11/42

Function details

-

® (shorter-all-inter-path a b p fs g)

(defun-sk shorter-all-inter-path (a b p fs g)
(forall path (inplies (and (path-fromto path a b Q)
(all-but-last-node path fs))
(shorter p path g))))

® (prop-fs-node a fs s pt g)
(defun prop-fs-node (a fs s pt Q)
(if (endp fs) t
(and (shortest-path a (car fs) (path (car fs) pt) Q)

(all-but-last-node (path (car fs) pt) s)
(prop-fs-node a (cdr fs) s pt g))))

o |

Oct. 13, 2004 — p.12/42

Proof sketch
=

Initially the invariant is correct

(defthminv-0

(inplies (nodep a Q)
(inv (all-nodes g) (list (cons a (list a))) g a)))

the invariant is maintained by the iteration

(defthm i nv- choose- next
(inmplies (and (inv ts pt g a)

(ny-subsetp ts (all-nodes Q))
(graphp g)

(consp ts)

(setp ts)

(nodep a Q)

(equal (path a pt) (list a)))

(let ((u (choose-next ts pt g)))
(inv (del u ts)

L___ (reassign u (neighbors ug) pt g g a)))) ___J

Oct. 13, 2004 — p.13/42

Proof sketch
=

o the final form of the invariant is correct

(defthm i nv-1 ast
(inmplies (and (nodep a g)
(graphp g))
(inv nil
(dsp (all-nodes g)
(list (cons a (list a)))

g)
g a)))

main lemma
(deft hm mai n-| emma
(inplies (and (inv nil pt g a)
(nodep b 9))
(shortest-path a b (path b pt) g)))

o

|

Oct. 13, 2004 — p.14/42

Proveinv-0
f #® sub-goal 1 T

(inmplies (nmema (all-nodes Q))
(prop-fs-node a

(conp-set (all-nodes g) (all-nodes g))
(conp-set (all-nodes g) (all-nodes g))

(list (list a a)) g))

® lemmal

(defthm conp-set-id
(not (conp-set s s)))

o |

Oct. 13, 2004 — p.15/42

Prove inv-0
f #® sub-goal 2 T

(inmplies (nmema (all-nodes Q))
(prop-ts-node a (all-nodes g) nil (list (list a a)) Q))

® lemma?2

(deft hm prop- pat h-ni |
(prop-ts-node a s nil (list (cons a (list a))) Q))

o |

Oct. 13, 2004 — p.16/42

Prove Inv-choose-next

-

® lemmal

(defthm pat hs-from s-tabl e-reassi gn
(inplies (and (paths-froms-table a pt Q)

(graphp g)
(ny-subsetp v-Ist (all-nodes g)))

(paths-froms-table a (reassign u v-Ist pt g) 9)))

not hard to prove this lemma

o |

Oct. 13, 2004 — p.17/42

Prove Inv-choose-next

-

® lemma?2

(deft hm prop-fs-node-choose
(inplies (and (inv ts pt g a)

(ny-subsetp ts (all-nodes Q))

(graphp g)

(consp ts)

(setp ts))

(let ((u (choose-next ts pt g)))
(prop-fs-node a

(conp-set (del u ts) (all-nodes g))
(conp-set (del u ts) (all-nodes g))
(reassign u (neighbors u g) pt g)

9))))

o |

Oct. 13, 2004 — p.18/42

-

9

Prove Inv-choose-next

lemma 3

(deft hm prop-ts-node-choose- next
(inplies (and (inv ts pt g a)

(let

(ny-subsetp ts (all-nodes Q))
(setp ts)
(consp ts)
(graphp 9)
(nodep a Q)
(equal (path a pt) (list a)))
((u (choose-next ts pt g)))
(prop-ts-node a (del u ts)
(conp-set (del u ts)
(all-nodes Q))

(reassign u (neighbors u g) pt 9)

9))))

|

Oct. 13, 2004 — p.19/42

Prove prop-fs-node-choose-next

-

the form of (prop-fs-node a ss ss pt g), has to be
generalized

(comp-set (del u ts) s) VS (cons u (comp-set ts s))

u Is the chosen vertex, which should have the shortest
path

General lemma

(deft hm prop-fs-node-choose-| enma2
(inplies (and (prop-fs-node a fs s pt Q)
(ny-subsetp fs (all-nodes Q))
(all-but-1last-node (path u pt) s)
(paths-froms-table a pt g)
(nodep u Q)

(graphp g)
(shortest-path a u (path u pt) Qg))

(prop-fs-node a (cons u fs) s
(reassign u (neighbors ug) pt g) 9)))

Oct. 13, 2004 — p.20/42

Prove prop-fs-node-choose-next

- N

#® consider (comp-set (del u ts) s) as a subset of (cons u
(comp-set ts s))

(deft hm prop-fs-node-choose-| enma3
(inmplies (and (my-subsetp s fs)
(ny-subsetp fs (all-nodes Q))
(paths-froms-table a pt g)
(prop-fs-node a fs ss pt Qg))
(prop-fs-node a s ss pt g)))

compare (comp-set ts s) with (comp-set (del u ts) s)

(deft hm prop-fs-node-choose-| enma4d
(inplies (and (mny-subsetp s ss)
(prop-fs-node a fs s pt g))
(prop-fs-node a fs ss pt qg)))

o |

Oct. 13, 2004 — p.21/42

-

has to establish (shortest-path a u (path u pt) g)

Prove prop-fs-node-choose-next

-

(deft hm choose- next - short est
(inplies (and (graphp Q)
(consp ts)
(ny-subsetp ts (all-nodes Q))
(inv ts pt g a))
(shortest-path a (choose-next ts pt Q)
(path (choose-next ts pt g) pt) 9)))

traditional proof: for the chosen vertex u and any path p
from a to u in g, find the leftmost vertex v, which is in ts,

In the path p, then the path associated with v in pt is
shorter than the partial path from a to v in p, and the
partial path is shorter than p, while u is chosen before v,
which means the path associated with u in pt is shorter
than the one associated with v J

Oct. 13, 2004 — p.22/42

Prove choose-next-shortest

-

auxiliary function (find-partial-path p s)
(defun find-partial-path (p s)
(if (endp p) nil
(if (mem (car p) s)
(cons (car p) (find-partial-path (cdr p) s))
(list (car p)))))

the partial path is shorter than the original one

(defthm partial - pat h-shorter

(inplies (graphp g)
(shorter (find-partial-path ps) p g)))

o |

Oct. 13, 2004 — p.23/42

Prove choose-next-shortest

- N

(find-partial-path p s) returns a path, whose internal
vertices are all in s

(deft hm pat hp-partial -path

(inplies (pathp p Q)
(and (path-fromto (find-partial-path p s)

(car p)

(car (last (find-partial-path p
s)))

9)

(all-but-last-node (find-partial-path p s) s))))

o |

Oct. 13, 2004 — p.24/42

Prove choose-next-shortest

- N

o the last vertex of (find-partial-path p (comp-set ts
(all-nodes g)) isin ts

(defthm find-partial - pat h-1ast-nmem
(inplies (and (nmem (car (last p)) ts)
(pathp p 9g)
(ny-subsetp ts (all-nodes g)))
(nmem (car
(1 ast
(find-partial-path p
(conp-set ts
(all-nodes g)))))
ts)))

o |

Oct. 13, 2004 — p.25/42

Prove choose-next-shortest

- N

o for any vertex v in ts, the path associated with the
chosen vertex Is shorter than the one associated with v

(deft hm choose- next -shorter-other
(inplies (nemyv ts)
(shorter (path (choose-next ts pt g) pt)
(path v pt) 9)))

the transitivity of shorter relation

(defthm shorter-trans
(inplies (and (shorter pl p2 Q)
(shorter p2 p3 g))
(shorter pl p3 g)))

o |

Oct. 13, 2004 — p.26/42

Prove prop-ts-node-choose-next
{___(defthn1prop-ts-node-choose-next ___W

(inplies (and (inv ts pt g a)

(ny-subsetp ts (all-nodes Q))

(setp ts)

(consp ts)

(graphp g)

(nodep a Q)

(equal (path a pt) (list a)))

(let ((u (choose-next ts pt g)))

(prop-ts-node a (del u ts)

(conp-set (del u ts)
(all-nodes q))

(reassign u (neighbors u g) pt g)

9))))

o |

Oct. 13, 2004 — p.27/42

-

Prove prop-ts-node-choose-next

similarily consider (comp-set (del u ts) s) as (cons u

-

(comp-set ts s))

(defthm prop-ts-
(inplies (and

(prop-

(deft hm prop-ts-
(inplies (and

node- | emma3

(paths-froms-table a pt Q)

(graphp 9)

(nodep a Q)

(equal (path a pt) (list a))

(prop-fs-node a fs fs pt g)

(prop-ts-node a ts fs pt Q)

(memu ts)

(shortest-path a u (path u pt) g))

ts-node a (del u ts) (cons u fs)
(reassign u (neighbors u g) pt g 9)))

node- | emmal

(ny-subsetp s fs)

(nmy-subsetp fs s)

(prop-ts-node a ts fs pt Qg))

(prop-ts-node a ts s pt g)))

Oct. 13, 2004 — p.28/42

Prove prop-ts-node-lemmas3

-

#® 2 sub-goals to prove: T

s for any vertex v in (del u ts), the path associated with
v In the reassigned path table is shorter than any
path from a to v with internal vertices in (cons u fs),
stated by prop-ts-node-lemma?2

s Internal vertices of all paths in the reassigned path

table are in the set (cons u fs), stated by
prop-ts-node-lemmas3-3

(deft hm prop-ts-node-| emma3-3
(inmplies (and (paths-froms-table a pt g)
(all-but-last-node (path v pt) fs)
(all-but-last-node (path u pt) fs))
(all-but-last-node (path v (reassign u v-I|st

pt 9))
(cons u fs))))

o |

Oct. 13, 2004 — p.29/42

Prove prop-ts-node-lemma2

- N

#® prop-ts-node-lemmaz2

(deft hm prop-ts-node-| emma2
(inplies (and (shorter-all-inter-path a v (path v pt) fs Q)
(graphp g)
(nodep a Q)
(equal (path a pt) (list a))
(prop-fs-node a fs fs pt @)
(shortest-path a u (path u pt) g)
(paths-froms-table a pt g))
(shorter-all-inter-path a v
(path v (reassign u
(nei ghbors u g)

pt 9))
(cons u fs) g)))

o |

Oct. 13, 2004 — p.30/42

Prove prop-ts-node-lemma2

- N

#® prop-ts-node-lemmaz2-3

(deft hm prop-ts-node-| enma2-3
(inplies (and (shorter-all-inter-path a v (path v pt) fs Q)
(graphp g)
(prop-fs-node a fs fs pt @)
(nodep a Q)
(path-fromto p a v Q)
(all-but-last-node p (cons u fs))
(shortest-path a u (path u pt) g)
(paths-froms-table a pt g)
(equal (path a pt) (list a)))
(shorter (path v (reassign u (neighbors u g) pt g))
P 9)))

two cases to prove
L s aandv are identical, easy to prove J
s a and v are not equal, by prop-ts-node-lemma2-2

Oct. 13, 2004 — p.31/42

Prove prop-ts-node-lemma2-2

- N

#® prop-ts-node-lemma2-2

(deft hm prop-ts-node-| enma2-2

(inplies (and (shorter-all-inter-path a v (path v pt) fs Q)
(graphp g)
(prop-fs-node a fs fs pt @)
(path-fromto p a v @)
(not (equal a v))
(shortest-path a u (path u pt) g)
(all-but-last-node p (cons u fs))
(paths-froms-table a pt g))

(shorter (path v (reassign u (neighbors u g) pt g))

P 9)))

o |

Oct. 13, 2004 — p.32/42

Prove prop-ts-node-lemma2-2

- N

® [wo0 cases 1o prove

s (path u pt) is NIL, (not (all-but-last-node p fs))
happens in the hypotheses. We know (shortest-path
a u (path u pt) g) holds and (path u pt) is NIL,
therefore there is no path from a to u, then u won't
happen in any path, especalilly in the path p; and we
know (all-but-last-node p (cons u fs)) holds, therefore
(all-but-last-node p fs) holds.
(defthm not - pat h-i nplies-path-in-fs

(inmplies (and (shortest-path a u (path u pt) g)
(not (path u pt))

(graphp 9)
(path-fromto p a v Q)

(all-but-last-node p (cons u fs)))
(all-but-last-node p fs))

L s (path u pt) is not NIL, by prop-ts-node-lemma2-1 J

Oct. 13, 2004 — p.33/42

Prove prop-ts-node-lemma2-1

-

#® prop-ts-node-lemma2-1

(defthm prop-ts-node-| enma2-1
(inplies (and (shorter-all-inter-path a v

(path v pt) fs @)

(graphp g)
(prop-fs-node a fs fs pt Q)
(path-fromto p a v Q)
(not (equal a v))
(path u pt)
(shortest-path a u (path u pt) g)
(all-but-last-node p (cons u fs))
(paths-froms-table a pt g))

(shorter (path v (reassign u (neighbors u g) pt g))

P 9)))

o |

Oct. 13, 2004 — p.34/42

Prove prop-ts-node-lemma2-1

- N

® [wo0 cases 1o prove

» for the path p from a to v, the vertex neighbored to v
INnpisu
s (path u pt) is the shortest path from a to u, so
(append (path u pt) (list v)) is shorter than p
s (path v pt) is shorter than (append (path u pt) (list
v))
s (path v (reassign u (neighbors u g) pt g)) Is shorter
than (path v pt)
» for the path p from a to v, the vertex neighbored to v
In p isn’t u, we have to define two auxiliary functions

(defun find-|ast-next-path (p)

(if (or (endp p) (endp (cdr p))) nil
(cons (car p) (find-last-next-path (cdr p)))))

(defun | ast-node (p)
L (car (last (find-last-next-path p)))) J

Oct. 13, 2004 — p.35/42

Prove prop-ts-node-lemma2-1

- N

(append (path (last-node p) pt) (list v)) is shorter than
(append (find-last-next-path p) (list v)), by
last-node-lemmal

(append (find-last-next-path p) (list v)) is actually the
path p, by last-node-lemmaZ2

(path v pt) is shorter than (append (path (last-node p)
pt) (list v)), by shorter-than-append-fs

o |

Oct. 13, 2004 — p.36/42

Prove prop-ts-node-lemma2-1

-

® last-node-lemmaZ2 T

(defthm | ast - node-| enmma2
(inplies (and (equal (car (last p)) v)
(pathp p 9))
(equal (append (find-last-next-path p) (list v)) p)))

shorter-than-append-fs

(deft hm shorter-than-append-fs
(inplies (and (shorter-all-inter-path a v (path v pt) s Q)
(prop-fs-node a fs s pt Q)
(ny-subsetp fs s)
(path w pt)
(paths-froms-table a pt Q)
(memw fs))
(shorter (path v pt)

L___ (append (path wpt) (list v)) g)))

|

Oct. 13, 2004 — p.37/42

°

Prove last-node-lemmal

-

(last-node p) is not equal to u, but still in (cons u fs)

(path (last-node p) pt) is the shortest path from a to
(last-node p), so shorter than (find-last-next-path p)

shorter-implies-append-shorter

(defthm shorter-inplies-append-shorter
(inplies (and (shorter pl p2 Q)
(graphp g)
(true-listp pl)
(equal (car (last pl)) (car (last p2)))
(pathp p2 g))
(shorter (append pl (list v))

(append p2 (list v)) g)))

to apply shorter-implies-append-shorter, establish
(pathp (find-last-next-path p)), by
path-from-to-implies-all-path-lemma J

Oct. 13, 2004 — p.38/42

Prove last-node-lemmal

- N

path-from-to-implies-all-path-lemma
(defthm path-fromto-inplies-all-path-Iemm
(inplies (and (path-fromto p a v Q)
(not (equal a v)))
(and (pathp (find-I|ast-next-path p) g)
(mem v

(nei ghbors
(car (last (find-last-next-path p)))

9)))))

pathpis from ato v, where a isn’t equal to v, the length
of p is at least 2, by path-length

the length of path p is at least 2, then the conclusion of
the lemma holds, by pathp-find-last-next

o |

Oct. 13, 2004 — p.39/42

Prove last-node-lemmal

-

path-length
(defthm path-1ength
(inplies (and (pathp p Q)
(not (equal (car p) (car (last p)))))
(<=2 (len p))))

o pathp-find-last-next

(deft hm pat hp-fi nd-I ast - next
(inplies (and (pathp p Q)

(<=2 (len p)))

(and (pathp (find-I|ast-next-path p) g)
(mem (car (last p))
(nei ghbors
(car (last (find-last-next-path p)))

9))))

o |

Oct. 13, 2004 — p.40/42

-

Prove inv-last

maintain some hypotheses

(deft hm del - subset p
(inplies (ny-subsetp ts s)
(nmy-subsetp (del u ts) s)))
(defthmdel -true-listp
(inplies (true-listp ts)
(true-listp (del u ts))))
(deft hm del - nodupl i cat es
(inplies (setp ts)
(setp (del uts))))
(deft hm pat h-a- pt -reassi gn
(inmplies (and (paths-froms-table a pt Q)
(graphp g)
(nodep a Q)
(equal (path a pt) (list a)))

(equal (path a (reassign u v-Ist pt

9))

(list a))))

|

Oct. 13, 2004 — p.41/42

°

Conclusion

Dijkstra’s shortest path algorithm T

122 lemmas and 48 goals proved by hints, within which
27 hints are only the hint of in-theory kind, 6 hints are
given on sub-goal level, 19 hints are explicit
Instantiation of lemmas, 2 hints are explicit induction
scheme, and 2 hints are explict expansion of functions

follow the traditional proof scheme

trying to find some common schemes and propose a
ACL2 book for further proof in graph algorithms

|

Oct. 13, 2004 — p.42/42

	Introduction
	Algorithm
	Formalization
	Formalization
	Traditional Proof
	Mechanical Proof
	Function details
	Function details
	Function details
	Function details
	Function details
	Proof sketch
	Proof sketch
	Prove inv-0
	Prove inv-0
	Prove inv-choose-next
	Prove inv-choose-next
	Prove inv-choose-next
	Prove prop-fs-node-choose-next
	Prove prop-fs-node-choose-next
	Prove prop-fs-node-choose-next
	Prove choose-next-shortest
	Prove choose-next-shortest
	Prove choose-next-shortest
	Prove choose-next-shortest
	Prove prop-ts-node-choose-next
	Prove prop-ts-node-choose-next
	Prove prop-ts-node-lemma3
	Prove prop-ts-node-lemma2
	Prove prop-ts-node-lemma2
	Prove prop-ts-node-lemma2-2
	Prove prop-ts-node-lemma2-2
	Prove prop-ts-node-lemma2-1
	Prove prop-ts-node-lemma2-1
	Prove prop-ts-node-lemma2-1
	Prove prop-ts-node-lemma2-1
	Prove last-node-lemma1
	Prove last-node-lemma1
	Prove last-node-lemma1
	Prove inv-last
	Conclusion

