
Mechanically checked proof on
Dijkstra’s shortest path algorithm

Qiang Zhang

J Moore

October 13, 2004

Oct. 13, 2004 – p.1/42

Introduction

Dijkstra’s shortest path algorithm: a classical algorithm
to find the shortest path between two vertices in a finite
graph with non-negative weighted edges

Directed Finite Graph with non-negative weighted
edges

Correctness of the algorithm: "if both vertices a and b
are in the graph g, then the algorithm does return a
shortest path from a to b in the graph g"

Oct. 13, 2004 – p.2/42

Algorithm

1. �(u)(0; for each vertex t other than u in V, �(t)(1;
and T (V;

2. Let s be a vertex in T such that �(s) is minimum;

3. If s = v, stop (or If T = {}, stop);

4. For every edge from s to t, if t 2 T and�(t) > �(s) + wt(st), then �(t)(�(s) + wt(st);
5. T (T� fsg and go to step 2.

Oct. 13, 2004 – p.3/42

Formalization

Graph representation: an association list ((u1 (v1 . w1)
(v2 . w2) ...) ...)

path table pt: ((u . path-from-a-to-u) ...)

Function returns the result
(defun dijkstra-shortest-path (a b g)

(let ((p (dsp (all-nodes g) (list (cons a (list a))) g)))

(path b p)))

Function maintains the iteration
(defun dsp (ts pt g)

(cond ((endp ts) pt)

(t (let ((u (choose-next ts pt g)))

(dsp (del u ts)

(reassign u (neighbors u g) pt g)

g)))))

Oct. 13, 2004 – p.4/42

Formalization

1. Let ts be initially all vertices in g;

2. Let pt be initially (list (cons a (list a)));

3. (path n pt) returns the already discovered path
associated with n in pt, i.e. initially (path a pt) = (list a)
and (path n pt) = nil for all other vertices; and (d n pt g)
returns the weight of (path n pt) in g. It is convenient to
use NIL as "infinity";

4. Repeat until ts is empty:
(a) Choose u in ts such that (d u pt g) is minimal;
(b) for each edge from u to some neighbor v with weight

wt, if (d v pt g) > (d u pt g) + wt, then reassign (path v
pt) to be (append (path u pt) (list v));

(c) Delete u from ts.

Oct. 13, 2004 – p.5/42

Traditional Proof

When a vertex u is chosen by step 4(a), the path
associated with u in the path table is the shortest path
from the start vertex to u in the graph

When a vertex u is chosen by step 4(a), for any vertex v
chosen after u, the path associated with v in the path
table is the shortest path from the start vertex to v
through the vertices(i.e. the internal vertices), which are
chosen before u

Oct. 13, 2004 – p.6/42

Mechanical Proof

Main Theorem:
(defthm main-theorem

(implies (and (nodep a g)

(nodep b g)

(graphp g))

(shortest-path a

b

(dijkstra-shortest-path a b g)

g)))

Invariant:
(defun inv (ts pt g a)

(let ((fs (comp-set ts (all-nodes g))))

(and (prop-ts-node a ts fs pt g)

(prop-fs-node a fs fs pt g)

(paths-from-s-table a pt g))))

Oct. 13, 2004 – p.7/42

Function details

(all-nodes g) returns all the nodes in the graph g
(defun all-nodes (g)

(cond ((endp g) nil)

(t (cons-set (caar g)

(my-union (strip-cars (cdar g))

(all-nodes (cdr g)))))))

(nodep n g) returns t iff a is a vertex in the graph g
(defun nodep (n g) (mem n (all-nodes g)))

(graphp g) returns t iff g is a legal graph:
(defun graphp (g)

(cond ((endp g) (equal g nil))

((and (consp (car g))

(edge-weightsp (cdar g)))

(graphp (cdr g)))

(t nil)))

Oct. 13, 2004 – p.8/42

Function details

(edge-weightsp lst) returns t iff lst is a legal list of edges:
(defun edge-weightsp (lst)

(cond ((endp lst) (equal lst nil))

((and (consp (car lst))

(rationalp (cdar lst))

(<= 0 (cdar lst))

(not (assoc (caar lst) (cdr lst))))

(edge-weightsp (cdr lst)))

(t nil)))

(comp-set ts s) returns the set deleting ts from s
(defun comp-set (ts s)

(if (endp s) nil

(if (mem (car s) ts)

(comp-set ts (cdr s))

(cons (car s) (comp-set ts (cdr s))))))

Oct. 13, 2004 – p.9/42

Function details

(shortest-path a b p g) returns t iff p is the shortest path
from a to b in g
(defun-sk shortest-path (a b p g)

(forall path (implies (path-from-to path a b g)

(shorter p path g))))

(paths-from-s-table s pt g) returns t iff for any path in pt,
it is associated with a key vertex u, then the path is a
path from s to u in g
(defun paths-from-s-table (s pt g)

(if (endp pt) t

(and (if (not (cdar pt)) t

(path-from-to (cdar pt) s (caar pt) g))

(paths-from-s-table s (cdr pt) g))))

Oct. 13, 2004 – p.10/42

Function details

(prop-ts-node a ts fs pt g)
(defun prop-ts-node (a ts fs pt g)

(if (endp ts) t

(and (shorter-all-inter-path a (car ts)

(path (car ts) pt) fs g)

(all-but-last-node (path (car ts) pt) fs)

(prop-ts-node a (cdr ts) fs pt g))))

(all-but-last-node p fs)
(defun all-but-last-node (p fs)

(if (endp p) t

(if (endp (cdr p)) t

(and (mem (car p) fs)

(all-but-last-node (cdr p) fs)))))

Oct. 13, 2004 – p.11/42

Function details

(shorter-all-inter-path a b p fs g)
(defun-sk shorter-all-inter-path (a b p fs g)

(forall path (implies (and (path-from-to path a b g)

(all-but-last-node path fs))

(shorter p path g))))

(prop-fs-node a fs s pt g)
(defun prop-fs-node (a fs s pt g)

(if (endp fs) t

(and (shortest-path a (car fs) (path (car fs) pt) g)

(all-but-last-node (path (car fs) pt) s)

(prop-fs-node a (cdr fs) s pt g))))

Oct. 13, 2004 – p.12/42

Proof sketch

initially the invariant is correct
(defthm inv-0

(implies (nodep a g)

(inv (all-nodes g) (list (cons a (list a))) g a)))

the invariant is maintained by the iteration
(defthm inv-choose-next

(implies (and (inv ts pt g a)

(my-subsetp ts (all-nodes g))

(graphp g)

(consp ts)

(setp ts)

(nodep a g)

(equal (path a pt) (list a)))

(let ((u (choose-next ts pt g)))

(inv (del u ts)

(reassign u (neighbors u g) pt g) g a))))

Oct. 13, 2004 – p.13/42

Proof sketch

the final form of the invariant is correct
(defthm inv-last

(implies (and (nodep a g)

(graphp g))

(inv nil

(dsp (all-nodes g)

(list (cons a (list a)))

g)

g a)))

main lemma
(defthm main-lemma

(implies (and (inv nil pt g a)

(nodep b g))

(shortest-path a b (path b pt) g)))

Oct. 13, 2004 – p.14/42

Prove inv-0

sub-goal 1
(implies (mem a (all-nodes g))

(prop-fs-node a

(comp-set (all-nodes g) (all-nodes g))

(comp-set (all-nodes g) (all-nodes g))

(list (list a a)) g))

lemma 1
(defthm comp-set-id

(not (comp-set s s)))

Oct. 13, 2004 – p.15/42

Prove inv-0

sub-goal 2
(implies (mem a (all-nodes g))

(prop-ts-node a (all-nodes g) nil (list (list a a)) g))

lemma 2
(defthm prop-path-nil

(prop-ts-node a s nil (list (cons a (list a))) g))

Oct. 13, 2004 – p.16/42

Prove inv-choose-next

lemma 1
(defthm paths-from-s-table-reassign

(implies (and (paths-from-s-table a pt g)

(graphp g)

(my-subsetp v-lst (all-nodes g)))

(paths-from-s-table a (reassign u v-lst pt g) g)))

not hard to prove this lemma

Oct. 13, 2004 – p.17/42

Prove inv-choose-next

lemma 2
(defthm prop-fs-node-choose

(implies (and (inv ts pt g a)

(my-subsetp ts (all-nodes g))

(graphp g)

(consp ts)

(setp ts))

(let ((u (choose-next ts pt g)))

(prop-fs-node a

(comp-set (del u ts) (all-nodes g))

(comp-set (del u ts) (all-nodes g))

(reassign u (neighbors u g) pt g)

g))))

Oct. 13, 2004 – p.18/42

Prove inv-choose-next

lemma 3
(defthm prop-ts-node-choose-next

(implies (and (inv ts pt g a)

(my-subsetp ts (all-nodes g))

(setp ts)

(consp ts)

(graphp g)

(nodep a g)

(equal (path a pt) (list a)))

(let ((u (choose-next ts pt g)))

(prop-ts-node a (del u ts)

(comp-set (del u ts)

(all-nodes g))

(reassign u (neighbors u g) pt g)

g))))

Oct. 13, 2004 – p.19/42

Prove prop-fs-node-choose-next

the form of (prop-fs-node a ss ss pt g), has to be
generalized

(comp-set (del u ts) s) VS (cons u (comp-set ts s))

u is the chosen vertex, which should have the shortest
path

General lemma
(defthm prop-fs-node-choose-lemma2

(implies (and (prop-fs-node a fs s pt g)

(my-subsetp fs (all-nodes g))

(all-but-last-node (path u pt) s)

(paths-from-s-table a pt g)

(nodep u g)

(graphp g)

(shortest-path a u (path u pt) g))

(prop-fs-node a (cons u fs) s

(reassign u (neighbors u g) pt g) g)))

Oct. 13, 2004 – p.20/42

Prove prop-fs-node-choose-next

consider (comp-set (del u ts) s) as a subset of (cons u
(comp-set ts s))
(defthm prop-fs-node-choose-lemma3

(implies (and (my-subsetp s fs)

(my-subsetp fs (all-nodes g))

(paths-from-s-table a pt g)

(prop-fs-node a fs ss pt g))

(prop-fs-node a s ss pt g)))

compare (comp-set ts s) with (comp-set (del u ts) s)
(defthm prop-fs-node-choose-lemma4

(implies (and (my-subsetp s ss)

(prop-fs-node a fs s pt g))

(prop-fs-node a fs ss pt g)))

Oct. 13, 2004 – p.21/42

Prove prop-fs-node-choose-next

has to establish (shortest-path a u (path u pt) g)
(defthm choose-next-shortest

(implies (and (graphp g)

(consp ts)

(my-subsetp ts (all-nodes g))

(inv ts pt g a))

(shortest-path a (choose-next ts pt g)

(path (choose-next ts pt g) pt) g)))

traditional proof: for the chosen vertex u and any path p
from a to u in g, find the leftmost vertex v, which is in ts,
in the path p, then the path associated with v in pt is
shorter than the partial path from a to v in p, and the
partial path is shorter than p, while u is chosen before v,
which means the path associated with u in pt is shorter
than the one associated with v

Oct. 13, 2004 – p.22/42

Prove choose-next-shortest

auxiliary function (find-partial-path p s)
(defun find-partial-path (p s)

(if (endp p) nil

(if (mem (car p) s)

(cons (car p) (find-partial-path (cdr p) s))

(list (car p)))))

the partial path is shorter than the original one
(defthm partial-path-shorter

(implies (graphp g)

(shorter (find-partial-path p s) p g)))

Oct. 13, 2004 – p.23/42

Prove choose-next-shortest

(find-partial-path p s) returns a path, whose internal
vertices are all in s
(defthm pathp-partial-path

(implies (pathp p g)

(and (path-from-to (find-partial-path p s)

(car p)

(car (last (find-partial-path p

s)))

g)

(all-but-last-node (find-partial-path p s) s))))

Oct. 13, 2004 – p.24/42

Prove choose-next-shortest

the last vertex of (find-partial-path p (comp-set ts
(all-nodes g)) is in ts
(defthm find-partial-path-last-mem

(implies (and (mem (car (last p)) ts)

(pathp p g)

(my-subsetp ts (all-nodes g)))

(mem (car

(last

(find-partial-path p

(comp-set ts

(all-nodes g)))))

ts)))

Oct. 13, 2004 – p.25/42

Prove choose-next-shortest

for any vertex v in ts, the path associated with the
chosen vertex is shorter than the one associated with v
(defthm choose-next-shorter-other

(implies (mem v ts)

(shorter (path (choose-next ts pt g) pt)

(path v pt) g)))

the transitivity of shorter relation
(defthm shorter-trans

(implies (and (shorter p1 p2 g)

(shorter p2 p3 g))

(shorter p1 p3 g)))

Oct. 13, 2004 – p.26/42

Prove prop-ts-node-choose-next

(defthm prop-ts-node-choose-next

(implies (and (inv ts pt g a)

(my-subsetp ts (all-nodes g))

(setp ts)

(consp ts)

(graphp g)

(nodep a g)

(equal (path a pt) (list a)))

(let ((u (choose-next ts pt g)))

(prop-ts-node a (del u ts)

(comp-set (del u ts)

(all-nodes g))

(reassign u (neighbors u g) pt g)

g))))

Oct. 13, 2004 – p.27/42

Prove prop-ts-node-choose-next

similarily consider (comp-set (del u ts) s) as (cons u
(comp-set ts s))
(defthm prop-ts-node-lemma3

(implies (and (paths-from-s-table a pt g)

(graphp g)

(nodep a g)

(equal (path a pt) (list a))

(prop-fs-node a fs fs pt g)

(prop-ts-node a ts fs pt g)

(mem u ts)

(shortest-path a u (path u pt) g))

(prop-ts-node a (del u ts) (cons u fs)

(reassign u (neighbors u g) pt g) g)))

(defthm prop-ts-node-lemma1

(implies (and (my-subsetp s fs)

(my-subsetp fs s)

(prop-ts-node a ts fs pt g))

(prop-ts-node a ts s pt g)))

Oct. 13, 2004 – p.28/42

Prove prop-ts-node-lemma3

2 sub-goals to prove:
for any vertex v in (del u ts), the path associated with
v in the reassigned path table is shorter than any
path from a to v with internal vertices in (cons u fs),
stated by prop-ts-node-lemma2
internal vertices of all paths in the reassigned path
table are in the set (cons u fs), stated by
prop-ts-node-lemma3-3
(defthm prop-ts-node-lemma3-3

(implies (and (paths-from-s-table a pt g)

(all-but-last-node (path v pt) fs)

(all-but-last-node (path u pt) fs))

(all-but-last-node (path v (reassign u v-lst

pt g))

(cons u fs))))

Oct. 13, 2004 – p.29/42

Prove prop-ts-node-lemma2

prop-ts-node-lemma2
(defthm prop-ts-node-lemma2

(implies (and (shorter-all-inter-path a v (path v pt) fs g)

(graphp g)

(nodep a g)

(equal (path a pt) (list a))

(prop-fs-node a fs fs pt g)

(shortest-path a u (path u pt) g)

(paths-from-s-table a pt g))

(shorter-all-inter-path a v

(path v (reassign u

(neighbors u g)

pt g))

(cons u fs) g)))

Oct. 13, 2004 – p.30/42

Prove prop-ts-node-lemma2

prop-ts-node-lemma2-3
(defthm prop-ts-node-lemma2-3

(implies (and (shorter-all-inter-path a v (path v pt) fs g)

(graphp g)

(prop-fs-node a fs fs pt g)

(nodep a g)

(path-from-to p a v g)

(all-but-last-node p (cons u fs))

(shortest-path a u (path u pt) g)

(paths-from-s-table a pt g)

(equal (path a pt) (list a)))

(shorter (path v (reassign u (neighbors u g) pt g))

p g)))

two cases to prove
a and v are identical, easy to prove
a and v are not equal, by prop-ts-node-lemma2-2

Oct. 13, 2004 – p.31/42

Prove prop-ts-node-lemma2-2

prop-ts-node-lemma2-2
(defthm prop-ts-node-lemma2-2

(implies (and (shorter-all-inter-path a v (path v pt) fs g)

(graphp g)

(prop-fs-node a fs fs pt g)

(path-from-to p a v g)

(not (equal a v))

(shortest-path a u (path u pt) g)

(all-but-last-node p (cons u fs))

(paths-from-s-table a pt g))

(shorter (path v (reassign u (neighbors u g) pt g))

p g)))

Oct. 13, 2004 – p.32/42

Prove prop-ts-node-lemma2-2

two cases to prove
(path u pt) is NIL, (not (all-but-last-node p fs))
happens in the hypotheses. We know (shortest-path
a u (path u pt) g) holds and (path u pt) is NIL,
therefore there is no path from a to u, then u won’t
happen in any path, especailly in the path p; and we
know (all-but-last-node p (cons u fs)) holds, therefore
(all-but-last-node p fs) holds.
(defthm not-path-implies-path-in-fs

(implies (and (shortest-path a u (path u pt) g)

(not (path u pt))

(graphp g)

(path-from-to p a v g)

(all-but-last-node p (cons u fs)))

(all-but-last-node p fs))

(path u pt) is not NIL, by prop-ts-node-lemma2-1

Oct. 13, 2004 – p.33/42

Prove prop-ts-node-lemma2-1

prop-ts-node-lemma2-1
(defthm prop-ts-node-lemma2-1

(implies (and (shorter-all-inter-path a v

(path v pt) fs g)

(graphp g)

(prop-fs-node a fs fs pt g)

(path-from-to p a v g)

(not (equal a v))

(path u pt)

(shortest-path a u (path u pt) g)

(all-but-last-node p (cons u fs))

(paths-from-s-table a pt g))

(shorter (path v (reassign u (neighbors u g) pt g))

p g)))

Oct. 13, 2004 – p.34/42

Prove prop-ts-node-lemma2-1

two cases to prove
for the path p from a to v, the vertex neighbored to v
in p is u

(path u pt) is the shortest path from a to u, so
(append (path u pt) (list v)) is shorter than p
(path v pt) is shorter than (append (path u pt) (list
v))
(path v (reassign u (neighbors u g) pt g)) is shorter
than (path v pt)

for the path p from a to v, the vertex neighbored to v
in p isn’t u, we have to define two auxiliary functions
(defun find-last-next-path (p)

(if (or (endp p) (endp (cdr p))) nil

(cons (car p) (find-last-next-path (cdr p)))))

(defun last-node (p)

(car (last (find-last-next-path p))))

Oct. 13, 2004 – p.35/42

Prove prop-ts-node-lemma2-1

(append (path (last-node p) pt) (list v)) is shorter than
(append (find-last-next-path p) (list v)), by
last-node-lemma1

(append (find-last-next-path p) (list v)) is actually the
path p, by last-node-lemma2

(path v pt) is shorter than (append (path (last-node p)
pt) (list v)), by shorter-than-append-fs

Oct. 13, 2004 – p.36/42

Prove prop-ts-node-lemma2-1

last-node-lemma2
(defthm last-node-lemma2

(implies (and (equal (car (last p)) v)

(pathp p g))

(equal (append (find-last-next-path p) (list v)) p)))

shorter-than-append-fs
(defthm shorter-than-append-fs

(implies (and (shorter-all-inter-path a v (path v pt) s g)

(prop-fs-node a fs s pt g)

(my-subsetp fs s)

(path w pt)

(paths-from-s-table a pt g)

(mem w fs))

(shorter (path v pt)

(append (path w pt) (list v)) g)))

Oct. 13, 2004 – p.37/42

Prove last-node-lemma1

(last-node p) is not equal to u, but still in (cons u fs)

(path (last-node p) pt) is the shortest path from a to
(last-node p), so shorter than (find-last-next-path p)

shorter-implies-append-shorter
(defthm shorter-implies-append-shorter

(implies (and (shorter p1 p2 g)

(graphp g)

(true-listp p1)

(equal (car (last p1)) (car (last p2)))

(pathp p2 g))

(shorter (append p1 (list v))

(append p2 (list v)) g)))

to apply shorter-implies-append-shorter, establish
(pathp (find-last-next-path p)), by
path-from-to-implies-all-path-lemma

Oct. 13, 2004 – p.38/42

Prove last-node-lemma1

path-from-to-implies-all-path-lemma
(defthm path-from-to-implies-all-path-lemma

(implies (and (path-from-to p a v g)

(not (equal a v)))

(and (pathp (find-last-next-path p) g)

(mem v

(neighbors

(car (last (find-last-next-path p)))

g)))))

path p is from a to v, where a isn’t equal to v, the length
of p is at least 2, by path-length

the length of path p is at least 2, then the conclusion of
the lemma holds, by pathp-find-last-next

Oct. 13, 2004 – p.39/42

Prove last-node-lemma1

path-length
(defthm path-length

(implies (and (pathp p g)

(not (equal (car p) (car (last p)))))

(<= 2 (len p))))

pathp-find-last-next
(defthm pathp-find-last-next

(implies (and (pathp p g)

(<= 2 (len p)))

(and (pathp (find-last-next-path p) g)

(mem (car (last p))

(neighbors

(car (last (find-last-next-path p)))

g))))

Oct. 13, 2004 – p.40/42

Prove inv-last

maintain some hypotheses
(defthm del-subsetp

(implies (my-subsetp ts s)

(my-subsetp (del u ts) s)))

(defthm del-true-listp

(implies (true-listp ts)

(true-listp (del u ts))))

(defthm del-noduplicates

(implies (setp ts)

(setp (del u ts))))

(defthm path-a-pt-reassign

(implies (and (paths-from-s-table a pt g)

(graphp g)

(nodep a g)

(equal (path a pt) (list a)))

(equal (path a (reassign u v-lst pt g)) (list a))))

Oct. 13, 2004 – p.41/42

Conclusion

Dijkstra’s shortest path algorithm

122 lemmas and 48 goals proved by hints, within which
27 hints are only the hint of in-theory kind, 6 hints are
given on sub-goal level, 19 hints are explicit
instantiation of lemmas, 2 hints are explicit induction
scheme, and 2 hints are explict expansion of functions

follow the traditional proof scheme

trying to find some common schemes and propose a
ACL2 book for further proof in graph algorithms

Oct. 13, 2004 – p.42/42

	Introduction
	Algorithm
	Formalization
	Formalization
	Traditional Proof
	Mechanical Proof
	Function details
	Function details
	Function details
	Function details
	Function details
	Proof sketch
	Proof sketch
	Prove inv-0
	Prove inv-0
	Prove inv-choose-next
	Prove inv-choose-next
	Prove inv-choose-next
	Prove prop-fs-node-choose-next
	Prove prop-fs-node-choose-next
	Prove prop-fs-node-choose-next
	Prove choose-next-shortest
	Prove choose-next-shortest
	Prove choose-next-shortest
	Prove choose-next-shortest
	Prove prop-ts-node-choose-next
	Prove prop-ts-node-choose-next
	Prove prop-ts-node-lemma3
	Prove prop-ts-node-lemma2
	Prove prop-ts-node-lemma2
	Prove prop-ts-node-lemma2-2
	Prove prop-ts-node-lemma2-2
	Prove prop-ts-node-lemma2-1
	Prove prop-ts-node-lemma2-1
	Prove prop-ts-node-lemma2-1
	Prove prop-ts-node-lemma2-1
	Prove last-node-lemma1
	Prove last-node-lemma1
	Prove last-node-lemma1
	Prove inv-last
	Conclusion

