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Review of Part 1
• SAT Solvers

– Find satisfying instances of Boolean variables 
in conjunctive normal form

– Used as an alternative to BDDs in fully 
automated hardware verification tools

• Decidable Fragment of ACL2
– list structures and unrollable functions
– detection algorithm
– Can express hardware invariants



Overview

• Conversion Algorithm

• Results

• Conclusion

• General Mechanism For Integrating 
External Tools (Discussion)



Converting ACL2 into CNF

• Number variables

• Create clausal form & negate property

• unroll functions and create clauses

• Eliminate Destructors & add list axioms

• Remove iff expressions and constants

• Optimizations



Example
(defun not-list (n x)

(if (zp n)

nil

(cons (not (car x)) (not-list (1- n) (cdr x)))))

(defun n-bleq (n x y)

(if (zp n)

t

(if (iff (car x) (car y)) 

(n-bleq (1- n) (cdr x) (cdr y))

nil)))

;; The (not (not x)) == x

(thm (n-bleq 2 (not-list 2 (not-list 2 x)) x)

:hints (("Goal" :sat nil)))



Numbering variables

• In internal form constants are quoted

• We use numbers to represent variables

(n-bleq 2 (not-list 2 (not-list 2 x)) x)

=>

(n-bleq ‘2 (not-list ‘2 (not-list ‘2 1)) 1)



Create Clause & Negate Property

• ∃x0,x1,…xn (and (or …) (or …) …) ==

∀ x0,x1,…xn (not (and (or …) (or …) …)

• Our first step is to change to a negated and 
expression

(n-bleq '2 (not-list '2 (not-list '2 1)) 1)

=> {negate and add a variable}

(not (and (not 2)

(bceq 2 (n-bleq '2 (not-list '2 (not-list '2 
1)) 1)))



BCEQ

• I use bceq rather than equal to emphasize 
that I only care about list structures.

• bceq is an equivalence relation

• Think of bceq as equal

(defun bceq (x y)

(if (or (consp x) (consp y))

(and (consp x) (consp y)

(iff x y))

(and (bceq (car x) (car y))

(bceq (cdr x) (cdr y)))))



Converting to BC-CNF

• We’re done when every clause:
– Contains 0 or 1 bceq expressions and

– The second bceq argument is a constant or an 
expression of car, cdr, consp, and not.



Converting into BC-CNF (cont)

• Looking at the first ill-formed clause, let f be the 
top-level function of its second bceq argument:
– If f is an if with a simple condition, break it into clauses 

assuming the condition or its negation

– Otherwise iff is if, create a variable for the condition

– If f is cons, break into clauses for consp, car, and cdr
– If f is a defined function with simple arguments, open 

and simplify

– Otherwise if f is defined, create variables for complex 
arguments

– Otherwise, delete the clause



Example
(nand 

(not 2)

(bceq 2 (n-bleq '2 (not-list '2 (not-list '2 1)) 1)))

=> {create variables for n-bleq’s args}

(nand

(not 2)

(bceq 3 (not-list '2 (not-list '2 1)) 1)

(bceq 2 (n-bleq '2 3 1)))) 

⇒ {create variables for not-list’s args}

(not (and (not 2)

(bceq 4 (not-list '2 1))

(bceq 3 (not-list '2 4))

(bceq 2 (n-bleq '2 3 1))))

=> {open not-list}



Example
(nand 

(not 2)

(bceq 4 (cons (not (car 1)) (not-list '1 (cdr 1))))

(bceq 3 (not-list '2 4))

(bceq 2 (n-bleq '2 3 1))))

⇒ {break up cons}

(nand 

(not 2)

(consp 4)

(bceq (car 4) (not (car 1))

(bceq (cdr 4) (not-list '1 (cdr 1)))

(bceq 3 (not-list '2 4))

(bceq 2 (n-bleq '2 3 1))))

⇒ {the next step is to open the next not-list, we’ll

⇒ skip ahead so that all the not-lists are gone}



Example

(nand 

(not 2)

(consp 4)

(bceq (car 4) (not (car 1))

(consp (cdr 4))

(bceq (cadr 4) (not (cadr 1)))

(bceq (cddr 4) 'nil)

(consp 3)

(bceq (car 3) (not (car 4))

(consp (cdr 3))

(bceq (cadr 3) (not (cadr 4)))

(bceq (cddr 3) 'nil)

(bceq 2 (n-bleq '2 3 1))))

=> {open the n-bleq}

consp clauses form 
from breaking up cons

Eventually, not-list 
simplifies to nil



Example
(nand 

…

(bceq 2 (if (iff (car 3) (car 1)) 

(n-bleq '1 (cdr 3) (cdr 1)) 

'nil))))

=> {create variable for if condition}

(nand

…

(bceq 5 (if (car 3) (car 1) (not (car 1))))

(bceq 2 (if 5 (n-bleq '1 (cdr 3) (cdr 1)) 'nil))))

⇒ {break up if}

(nand

…

(or (bceq 5 (car 1)) (not (car 3)))

(or (bceq 5 (not (car 1))) (car 3))

(bceq 2 (if 5 (n-bleq '1 (cdr 3) (cdr 1)) 'nil))))



Example
(nand 

(not 2)

(consp 4)

(bceq (car 4) (not (car 1))

(consp (cdr 4))

(bceq (cadr 4) (not (cadr 1)))

(bceq (cddr 4) 'nil)

(consp 3)

(bceq (car 3) (not (car 4))

(consp (cdr 3))

(bceq (cadr 3) (not (cadr 4)))

(bceq (cddr 3) 'nil)

(or (bceq 5 (car 1)) (not (car 3)))

(or (bceq 5 (not (car 1))) (car 3))

(or (bceq 6 (cadr 1)) (not (cadr 3)))

(or (bceq 6 (not (cadr 1))) (cadr 3))

(or (bceq 2 't) (not 5) (not 6))

(or (bceq 2 'nil) (not 5) 6)

(or (bceq 2 'nil) 5)))
Cases where bleq 
is false

Case where bleq 
is true



Destructor Elimination
• Remove car, cdr, and consp

– Find the variable parts we need

– Create new numbers for these parts

– Add list structure axioms

– Create new clauses from the old ones



Defining Γ
– Keep a data structure Γ for each variable v
– Γ is nil if v isn’t needed
– Otherwise Γ is a four-tuple:

• (car-sub, cdr-sub, consp-needed, atom-needed)
• car-sub is a data structure Γ for (car v)
• cdr-sub is a data structure Γ for (cdr v)
• consp-needed is a Boolean which is true if we need 

to know (consp v)
• Atom-needed is a Boolean which is true if we need 

to know whether v is non-nil



Finding Γ
• We start by setting Γ to nil for each variable
• For each non-bceq literal:

– If it is a consp, we set get the Γ structure for its 
argument (or build it) and set its third value to t

– If it is a not, we get the Γ structure for its 
argument (or build it) and set its fourth value to 
t

– Otherwise we the Γ structure for the literal (or 
build it) and set its fourth value to t



Example
• The non-bceq clauses are (not 2), (consp 4), 

(consp (cdr 4)), (consp 3), (consp (cdr 3)).
• This leads to:

1: nil

2: (nil nil nil t)

3: (nil (nil nil t nil) t nil)         

4: (nil (nil nil t nil) t nil) 

5: nil

6: nil



Example
• The non-bceq literals in bceq clauses are:  (not 

(car 3)), (car 3), (not (cadr 3)), (cadr 3), (not 6), 6, 
and 5.  This leads to:

1: nil

2: (nil nil nil t)     

3: ((nil nil nil t) ((nil nil nil t) nil t nil) t nil)         

4: (nil (nil nil t nil) t nil)

5: (nil nil nil t)

6: (nil nil nil t)



Finding Γ (continued)
• Examine bceq literals in backwards order:

– If the second argument is a car or cdr expression Γ for 
both arguments.  We set anything which is t in the first 
argument’s Γ to t in the second argument’s.

– If the second argument is a consp or a not expression, 
and the first arguments non-nil value is t, then we treat 
the second argument like a non-bceq literal

– If the second argument is constant, we ignore it

• In forwards order, the first argument of a bceq is 
new



Example
• The first literal we look at is (bceq 2 'nil), which is 

ignored.

• The first interesting literal is (bceq 6 (not (cadr 
1))).  In this case, since the fourth value of the Γ
for 6 is t, we treat (not (cadr 1)) like a non-bceq
literal.  
– Γ 1: (nil ((nil nil nil t) nil nil nil) nil nil)

• The next literal is (bceq 6 (cadr 1)), which leads to 
no change since 6 and (cadr 1) both have the Γ: 
(nil nil nil t).



Example
• The Γ list for our example thus becomes:

1 (x): 
((nil nil nil t) ((nil nil nil t) nil nil nil) nil nil)

2 (n-bleq (not-list ‘2 …) x): 
(nil nil nil t)     

3 (not-list ‘2 (not-list ‘2 …): 
((nil nil nil t) ((nil nil nil t) nil t nil) t nil)         

4 (not-list ‘2 …): 
((nil nil nil t) ((nil nil nil t) nil t nil) t nil)

5 (car x): 
(nil nil nil t)

6 (cadr x): 
(nil nil nil t)


