
ACL2 Challenge Problem:ACL2 Challenge Problem:
Formalizing Formalizing BitCryptolBitCryptol
April 20th, 2005April 20th, 2005

John Matthews
Galois Connections
matthews@galois.com

RoadmapRoadmap
• SHADE verifying compiler
• Deeply embedding Cryptol semantics in ACL2
• Challenge problem
• A possible long-term solution

MotivationMotivation
• Programming errors can significantly weaken the strength

of a cryptographic algorithm
• Flawed crypto implementations can have grave

consequences
• Difficult to have crypto experts perform code-to-spec

reviews of increasingly numerous crypto implementations
– Trusted experts are scarce
– Review process is expensive
– Optimized designs are complex, easy to overlook corner cases

High Assurance AAMP7 Crypto softwareHigh Assurance AAMP7 Crypto software
• SHADE project goals

• Secure, High Assurance Development Environment for AAMP7
software

• Develop secure software in multiple languages, including Cryptol
• Runs on AAMP7 microprocessor

• Supports data and timing separation in hardware
• Collaboration with Rockwell Collins, UT Austin

• Galois SHADE goals:
• Crypto algorithms written in a high-level domain-specific

declarative programming language (Cryptol)
• SHADE Cryptol compiler generates efficient AAMP7 code
• Compiler also generates formal proof that AAMP7 code is correct
• Proof is automatically certified by ACL2. The SHADE compiler is

not trusted.

SHADE Correctness propertySHADE Correctness property

Cryptol program
(abstract syntax)

AAMP7 assembly
program

Meaning of Cryptol
program

Meaning of AAMP7
assembly program

compile

deep
embedding

deep
embedding

prove
equivalent

ExampleExample
• Simple Cryptol program for calculating Fibonacci numbers

(mod 232)
Word : Type;
Word = B^32;

rec
 fibs : Word^inf[32, 2];
 fibs = [0, 1] ## [x + y | x <- drops{1} fibs
 | y <- fibs];

fibs = [0, 1, 1, 2, 3, 5, 8, 13, 21, …]

• Elements calculated by fibs:

0

1

+

fibs

Step 1: Formalize Fib spec in ACL2Step 1: Formalize Fib spec in ACL2
(defun fib-spec (n)
 (cond
 ((not (integerp n)) 0)
 ((< n 1) 0)
 ((equal n 1) 1)
 (t (logext *word-size* (+ (fib-spec (- n 1))
 (fib-spec (- n 2)))))))

• Currently: fibs is shallowly embedded in ACL2
• Goal: Deeply embed fibs using semantics function for

entire Cryptol language (i.e. a Cryptol interpreter)
– Inputs:

• Abstract syntax for a Cryptol expression
• Association list mapping free variables to their values

– Output:
• Value for Cryptol expression

• Prove that shallow embedding is equivalent to deep embedding

Remaining verification stepsRemaining verification steps
2. Compile fibs to AAMP7 assembly code
3. Generate cutpoint assertions

– entrypoint assertion: top-of-stack is input value n
– exitpoint assertion: top-of-stack is (fib-spec n)
– cutpoint assertions: current stack, memory locations correspond

to particular fib-spec subexpressions
…plus lots of environmental assumptions and frame assertions

4. Symbolically simulate AAMP7 from each cutpoint to
verify assertions

5. Use cutpoint measures to show AAMP7 code terminates
For more details, see
 A Symbolic Simulation Approach to Assertional Program

Verification, J. Matthews, J Moore, S. Ray, D. Vroon

Problem:Problem: we canwe can’’t get past step 1!t get past step 1!
• Issue: Cryptol has lazy streams (infinite sequences) as

data values. But, the type system ensures that
– top-level Cryptol program only looks at a finite prefix of any

stream
– all stream definitions must be well-founded, with finite history.
– Result: Any (µ)Cryptol program can be compiled to efficient code

by implementing streams as finite circular buffers

• We’ve tried several ways to deeply embed lazy streams in
ACL2, without success

• So, I’ve created an ACL2 challenge problem
– Stripped-down subset of Cryptol, called BitCryptol
– Contains just enough features to demonstrate the problem

BitCryptol BitCryptol typestypes

• A BitCryptol value can be only one of three types
– Bit (i.e. Boolean)
– Stream index (i.e. a natural number)
– A stream of bits (i.e. a function taking a natural number as input

and returning a bit as output)

BitCryptol BitCryptol semanticssemantics
• Next, I’ll give some equations the BitCryptol semantics

function must satisfy for each well-formed BitCryptol
expression

 ((sem * *) => *)

– First argument: expression
– Second argument: environment of free variable values (as an

association list)
– Result: value of expression in the environment

• These equations will be heavily used in the equivalence
proof of the deep-to-shallow embedding

Bits andBits and stream indexesstream indexes

(sem nil env) = nil

(sem t env) = t

Bit constants

Exclusive-or (sem `(Xor ,b1 ,b2) env)
 = (not (equal (sem ,b1 env)
 (sem ,b2 env)))

Stream index
constant

(sem n env) = n [Assuming (natp n)]

Variables (of any type)Variables (of any type)

(sem v env)
 = (cdr (assoc-equal v env))

Variable

StreamsStreams

Comprehension (sem `(SLam ,v ,b) env)
 = (lambda (n)
 (let ((newenv `((,v . ,n) ,@env)))
 (sem b newenv)))

Application (sem `(At ,s ,n) env)
 = (apply (sem s env) (sem n env))

StreamsStreams

Cons (sem `(SCons ,b ,s) env)
 = (lambda (n)
 (if (zp n)
 (sem b env)
 (apply (sem s env) (- n 1))))

Tail (sem `(STail ,s) env)
 = (lambda (n)
 (apply (sem s env) (+ n 1)))

Local stream definitionsLocal stream definitions

(sem `(SWhere ,s
 ((,v1 . ,s1)
 (,v2 . ,s2)
 ...))
 env)
 = (LETREC ((recenv `((,v1 . ,f1)
 (,v2 . ,f2)
 ...
 ,@env))
 (f1 (lambda (n) (apply (sem s1 recenv) n)))
 (f2 (lambda (n) (apply (sem s2 recenv) n)))
 ...)
 (sem s recenv))

• Can be mutually-recursive, and nested
– HOL semantics also enforces well-foundedness

HOL semantics of a recursive streamHOL semantics of a recursive stream
• To get an idea of the technique we use to formalize

recursive stream definitions in Isabelle (without needing
domain theory), I’ll show the semantics of a SWhere
expression containing a single recursive stream definition:
(sem `(SWhere ,s ((,v . ,d))) env)
= (let* ((d_fcn (lambda (s’) (sem d `((,v . s’) ,@env))))
 (d_strm (lambda (n) (wf_fix_stream d_fcn n))))
 (sem s `((,v . d_strm) ,@env)))

• The definition of wf_fix_stream is well-founded on
stream index n. Parameter f is a function from streams
to streams.
(defun wf_fix_stream (f n)
 (f (lambda (k)
 (if (< k n)
 (wf_fix_stream f k)
 nil)))
 n))

BitCryptol BitCryptol example programexample program
• Calculates the least significant bit of the Nth Fibonacci

number

`(SWhere (At "fib" ,N)
 (("fib" . (SCons nil "fib-tail"))
 ("fib-tail" . (SCons t (SLam "n"
 (Xor (At (STail "fib") "n")
 (At "fib" "n")))))))

(apply (sem "fib" recenv) N)
= (apply (sem "fib-tail" recenv) (- N 1))
= (apply (sem `(SLam "n" …) recenv) (- N 2))
= …
= (xor (apply (sem "fib" recenv) (- N 1))
 (apply (sem "fib" recenv) (- N 2)))

• Assuming N is a natural number greater than 1, then

Our deep embedding approach so farOur deep embedding approach so far
• Problem: no function objects in ACL2
• Idea: represent streams syntactically in the environment

– Add an observation parameter to the input
• If expression is a finite vector, then observation is value itself
• If expression is a function, then observation is value to apply

function to
• If expression is a stream, then observation is stream index

– Add high-water indexes to stream bindings in environment
• Set to ω when stream variable is defined

– When looking up stream variable in environment:
1. Check that observation parameter is less than high-water mark
2. Update stream variable’s high-water index to be the

observation parameter
3. Evaluate expression that the stream variable was bound to

(with the current observation parameter)

And the measure isAnd the measure is……??
• Intuitively, it seems like the semantics should terminate.

We’ve tried a series of increasingly complex measures,
but haven’t found one that works:
– Expression measure
– Expression+environment measure
– ω-polynomial measure

ExpressionExpression measuremeasure
• Uses acl2-count on size of expression
• Problem: looking up stream variables

Expression+environment measureExpression+environment measure
• Also takes the size of the environment into account

– Size of each each stream binding is ω * (high-water mark) + (size
of stream expression)

– Size of expression is ω * (observation parameter) + (size of
expression)

• Problem 1: STail expressions increment the observation
parameter

• Problem 2: SWhere expressions increase size of
environment by adding new environment entries

ωω-polynomial-polynomial measuremeasure
• Makes SWhere expressions larger than the stream

bindings they introduce
– Define a recursive measure function on expressions, that returns

an ω-polynomial
– Size of most expressions based on acl2-count
– Size of a stream comprehension is ω * (size of stream body)
– Size of a SWhere expression is sum of stream definitions, plus the

size of the body
– Size of stream variable binding in environment is (high-water

index) * (size of stream)
– Use this measure function in expression+environment measure

• Had to build an ACL2 book for ω-polynomial arithmetic
• Problem: What is the measure of a stream variable in an

expression, or in a set of recursive stream definitions?

HOL semanticsHOL semantics
• At this point we gave up
• Instead, we developed a core subset of language, called femtoCryptol

– bitvectors
– tuples
– mutully recursive, nested stream definitions
– stream comprehensions

• Able to give a deep embedding for femtoCryptol in Isabelle
– Defined a fixpoint operator for environments of well-founded stream

transformers

types 'a stream = nat => 'a
 'a senv = string => ('a stream) option

fix_senv :: 'a => string set => ('a senv => 'a senv)
 => 'a senv"

• Validated the semantics on simple femtoCryptol programs, like fib

A modest proposalA modest proposal
• Warning: 1/2-baked ideas from here on out

• Formalize higher order functions, as a new ACL2 theory

– N.B: higher order functions ≠ higher order logic!

– But do need to avoid logical paradoxes

• Goals
– First-order ACL2 theory
– No types
– Minimal (or maybe no) changes to ACL2 core.
– Simple correspondence between ACL2 functions and function objects
– Powerful enough to deeply embed Cryptol

• Ideally: prove any theorem of classical higher order logic
– Function objects are executable

Function objectsFunction objects
• Add function objects as a new kind of atom to ACL2

universe
• “Good” atoms and function objects are stratified into

ranks
– Existing ACL2 objects have rank zero
– A function object has rank n + 1 if it returns a rank n object when

applied to a rank n object, and returns nil otherwise
– Any rank n object also has rank n + 1

• apply operator applies a function object to a value
– May not give the value you expect if rank of the function’s

argument is too large
– Should be able to prove that apply can’t be ranked

Function comprehension axiom schemaFunction comprehension axiom schema

• If this formula is provable about ACL2 expressions e and n

 (and (natp n)
 (forall (x) (if (has_rank x n)
 (has_rank e n)
 (null e))))

• Then this formula is valid in the theory

 (let ((f (lambda (x) e)))
 (and (has_rank f (+ n 1))
 (equal (apply f x) e)))

Properties about Properties about applyapply

• These properties seem useful for writing rank-
polymorphic ACL2 functions

• Extensionality
 (implies (and (has_rank f n)
 (has_rank g n)
 (forall (x)
 (equal (apply f x)
 (apply g x)))
 (equal f g))

• has_rank is stratified
 (implies (has_rank f (+ n 1))
 (has_rank (apply f x) n))

Questions about function objectsQuestions about function objects
• Is this theory a conservative extension of ACL2?
• Does it work in the presence of local events and

functional instantiation?
• Is it powerful enough?
• What changes have to be made to the core of ACL2?

Even more modest proposalsEven more modest proposals
• Matt Kaufmann: Use ideas from domain theory and
defchoose to give semantics of Cryptol in current ACL2
framework
– Model streams as a series of increasingly precise finite

approximations
– Use defchoose to pick a good enough approximation for the

desired stream index observation

• Thomas Nordin: Change semantics of streams to be finite,
but large, sequences.
– Key idea: SCons, SDrop do not change the size of the sequence
– Allows for recursive stream definitions
– Many laws would hold as is, some would have to be weakened a bit

• Warren Hunt: Remove STail expressions from Cryptol
– Would make semantics much easier to formalize in ACL2
– Any given Cryptol program can be rewritten to not use STail

QuestionsQuestions

