Functional Languages and
Parallelization

Instantiating Ideas with ACL2

“"From this we see that the structure of the data can
serialize a process” - Gabriel and McCarthy 1984

July 20, 2005
David L. Rager

Overview

Constructs Added (plet, parallelize, pand,
por)

Discussion of Efficiency

B Top level vs. recursive parallelization

B Tests (Fib, Mergesort, Adaptive, Sum-tree)
Loose-ends

B Interrupting parallelization

B Shared memory vs. distributed

B |LISPs’ current thread support

Problem of Granularity
Future Work

Constructs Added (Plet)

Computes the bindings in parallel

B Ex: (plet ((x 4) (y 5)) (+ xv))
Logically let

Captures lexical and special variables
B demo ptest-forms.lisp

Stobjs

B demo ptest-stobj.lisp

B Safe because stobj read/writes must follow all
syntax properties of a let, which is heavily
restricted

Plet* doesn’t exist for obvious reasons

Construct Added (Parallelize)

Computes the arguments to the function in
parallel
B Ex: (parallelize (+ 3 4))

Supposed to be “easy to use” - just “wrap
it around”

Similar in meaning to pcall in other papers

B Since it's different structure, it currently retains
a different name

B Pcall more intuitive name?

Construct Added (Pand/Por)

1 A oo A

00

Computes the arguments to and/or in parallel
B Ex:(pand 345nil7) (por3nil567)

Is it possible to do lazy evaluation? No!

Do we exit early upon knowing the rest of the computation is
irrelevant? Yes!

Was that tricky? Yes.

B How do we cancel previously spawned threads? We don't.

B We remove closures from the closure queue, and since those closures’
results are meaningless, we signhal the thread waiting for results to
compute its result. When that thread goes to look up the result, it will
find a nil, but since the result doesn’t matter, this is OK.

B With aggressive parallelization, early exiting is effectively disabled

Might be encountering an OpenMCL bug with early exit (may be in
my code too)

Easy to provide constructs without early exit

Current bug: since and/or are macros, they can’t be applied, so we
currently use eval, which breaks parallelize sometimes — NOT a big
deal, just disclaimed to give an accurate snapshot of the project

Discussion of Efficiency

[0 Top Level Parallelization
B Presented in May 2005
B Parallelizes once at the top level
B Ex: foo
(defun foo (x)
(if (zp x) O
(plet ((a x)
(b (foo (- x 1))))
(+ a b)))

0 The first call to foo will actually result in computing the
binding for A and the binding for B in parallel

[0 The recursive calls (foo (- x 1)), (foo (- x 2)),... (foo 0)
will treat the plet as a let

B Good for simple problems like Mergesort on a fixed
number of cores/processors

Discussion of Efficiency

[0 Recursive Parallelization

H New
B Parallelizes at all levels
B Ex: foo

(defun foo (x)
(i1f (zp x) O
(plet ((a x)
(b (foo (- x 1))))
(+ a b)))

O The first call to foo will actually result in computing the binding
for A and the binding for B in parallel

[0 The recursive calls (foo (- x 1)), (foo (- x 2)),... (foo 0) will also
result in parallel computation of bindings A and B
B Good for problems where the parallelize construct is not part
of the expensive operation (see ptest-plet in ptest-
adaptive.lisp)
L] 1\:/ery Bad for Mergesort and anything we're likely to use plet
or

Problems in Parallelizing Functional
Programs

[0 Recursive parallelization give us parallelization for data
dependent computation

HEX: count

(defun count (x)
(Lf (atom x)
1
(+ (count (car x))
(count (cdr x)))))

® Will counting the car or the cdr take longer?
Determining this answer ahead of time is NP complete.

B Only recursive parallelization assumes everything will
take a long time and spawns threads for all of it

Discussion of Efficiency

[0 Recursive Parallelization, when Resources are Available

B New
B If resources are available, can reparallelize at that
level
B EXx: Foo
[0 Suppose “resources are available” for the initial call (as
they should be), it will treat the call for (foo x) as a plet
O Now, suppose it takes a long time to compute binding A,
and resources are no longer “available”
O (foo (- x 1)) will just use a let, bypassing reparallelization
O Now, suppose resources become available during
computation for (foo (- x 1))
[0 For the recursive call (foo (- x 2)), we will reparallelize
the computation of the bindings
O And so forth until we finish all computation

Discussion of Efficiency

How do we know when resources are

“available?”

B For now, let’s just assume resources are
available whenever the number of active
threads in the system is less than the number
of cores/processors in the system

B This alone performs well for tasks with a good
amount of cpu time between evaluations of
the parallelization constructs

B We will see this come back to haunt us in the
granularity discussion

-10 -

Tests

Simple Arithmetic

B ptest-arithmetic.lisp

Basic Arithmetic Done in Parallel

ptest-arithmetic.lisp

Trial 1 Trial 2 |[Trial 3 |Awg Speedup
Arithmetic (10) 20.010 | 20.010 | 20.030 | 20.017
Arithmetic (10) Parallel | 10.060 | 10.030 | 10.050 | 10.047 1.992

B note to presenter: demo with (arithmetic 3)

-11 -

Tests

Mergesort
B ptest-mergesort.lisp

B No longer drops elements (mv-let thread-safe

now) thanks Matt!

Mergesort Done in Parallel

ptest-mergesort.lisp

Trial 1 Trial2 |Trial 3 |Avg Speedup
MergeSort (1000) 0.005 0.005 0.005 0.005
MergeSort Parallel (1000) 0.050 0.030 0.032 0.037 0.134
MergeSort Parallel (1000) with granularity function 0.005 0.005 0.006 0.005 0.938
MergeSort (50000) 0.416 0.421 0.414 0.417
MergeSort Parallel (50000) 0.630 0.536 0.694 0.620 0.673
MergeSort Parallel (50000) with granularity function 0.249 0.253 0.247 0.250 1.670

parallelized and non-parallelized executions

Note: Since mergesort is GC intensive, | disabled the GC for these tests. GC time is oddly the same btw

Note2: All these tests were run in raw OpenMCL, due to stack limitations

Note3: We'd really like to test lists larger than 50000 elements, but we have stack limitations still

B Note to presenter: demo with (integers 50000 nil)

-12 -

Tests

[0 Adaptive Parallelization

ptest-adaptive.lisp

Thanks to our “resources-available” idea, we can
reparallelize when cores/processors go idle

Observe the difference between putting
recursive call first and putting recursive call last

[0 We could create a special version of defun that

looked for the recursive call and reordered it, but

X k*

yuc

Whenever por returns early, it currently causes
an error - this is somewhat encouraging,
because it means Ror does occasionally return
early, even under heavy parallelization

Note to presenter: demo with (test-let2, test-plet2-PR, test-plet2-PL 5) and
traces

-13 -

Tests

Adaptive Parallelization

Adaptive Computation Tests

ptest-adaptive.lis

Trial 1 |Trial2 |Trial 3 |Avg Speedup
Let (10) 55.065| 55.074| 55.061| 55.067
Plet-PL (10) 29.394| 29.651| 29.551| 29.532 1.865
Plet-PR (10) 29.418| 29.474| 29.474| 29.455 1.869
Let (10) Two branches 110.119] 110.126] 110.125] 110.123
Plet-PL (10) Two branches 91.303| 91.341| 91.487| 91.377 1.205
Plet-PR (10) Two branches 58.148| 58.201| 58.268| 58.206 1.892
Let (10) Three branches 165.190f 165.180{ 165.219| 165.196
Plet-PL (10) Three branches | 136.999] 136.806| 136.916] 136.907 1.207
Plet-PR (10) Three branches | 87.517| 87.627| 87.479| 87.541 1.887
And (10) Two branches 110.037{ 110.122{ 110.137{ 110.099
Pand-PR (10) Two branches | 58.502| 58.976] 58.786| 58.755 1.874
Or (10) Two branches 10.015] 10.013] 10.013] 10.014
Por-PR (10) Two branches 58.360] 58.433|bomb 58.397 0.171

-14 -

Tests

Fibonacci
B ptest-fib.lisp
B Thanks to our “resources-available” idea, we can

reparallelize when cores/processors go idle
Much better results with “granularity function”

Note to presenter: demo (fib 34) with the granularity function and
without the granularity function

- 15 -

Tests

Parallel Fibonacci
ptest-fib.lisp
Trial 1 Trial 2 Trial 3

Fib (36) 1.644 1.642 1.642 1.643

Pfib (36) 16.719 32.047|crash 24.383 0.067
Pfib (36) with granularity function 1.239 1.213 1.171 1.208 1.360
Fib (40) 11.286 11.281 11.284 11.284

Pfib (40) Blows up |Blows up |Blows up

Pfib (40) with granularity function 7.072 7.089 7.09 7.084 1.593
Fib (45) 123.968] 123.976] 123.974| 123.973

Pfib (45) Blows up |Blows up |Blows up

Pfib (45) with granularity function 76.593 75.575 75.862 76.010 1.631
Fib (47) 324.653] 324.645 324.66] 324.653

Pfib (47) Blows up |Blows up |Blows up

Pfib (47) with granularity function 198.912 198.52] 198.569| 198.667 1.634

B Note to presenter: demo (fib 34) with the granularity function and
without the granularity function

Tests

[0 Sum a tree

(defun sum (tree)
(cond ((null tree) 0)
((atom tree) tree)
(t (+ (sum—-tree (car tree))
(sum-tree (cdr tree))))

m Parallel version absolutely bombs

B There’s no quick way to estimate granularity for a function
that’s so fast

B It's spawning a huge number of processes for some reason
right now — not sure why

B Handling this function may be a future goal, but since it's
so fast, it would need to be rewritten before we could save
any time

-17 -

Loose-Ends

Interrupting Parallelization

B Most parallelization variables are reset
upon reentering of the ACL2 loop

B Since we spawn a thread to process
closures and spawn other threads, we
don’t reset the variables related to that

B Killing that thread would be ulgy
(although I have done it automatically in
the past)

- 18 -

Loose-Ends

Shared Memory vs. Distributed Memory

B The test for whether resources are available
requires quick access to shared data

B While a lock is not required, since it’s just an
estimate, the question of whether resources are
available is asked a lot

B Results: fine for SMP, most likely horrendous for
distributed memory

B Conclusion: default to top-level parallelization in
distributed memory architectures

[0 Maybe could give each spawned process a
bank of resources to work with and send
updates to that number asynchronously

- 19 -

Problem of Granularity

Large granularity — something that takes a long time
Small granularity — something that takes a short time
So why do we even need the “granularity function” for

OO0

Fibonacci?

B Resources become available to other recursive calls at random
times

B Therefore we can be anywhere in a recursive call stack

B We're most likely to be at the points where we're taking fib of
smaller numbers, because there are more calls to them

B As a result the smaller calls have a built-in advantage to
asking if resources are available and then seizing those
resources

B Spawning threads for small function calls is a waste of time

B OpenMCL can’t handle threads spawning and dying so quickly
and creation/destruction of semaphores so quickly

m Without it, even though only eight may be active at any

moment, we create thousands of threads across a function call

- 20 -

Problems with “Granularity
Function”

'he user would prefer to not enter
the “granularity function”

takes time

Getting rid of it and having perfect
results is NP Hard (I think)

How can we approximate the
granularity function automatically?

Evaluating the “granularity function’

4

-21 -

Approximating Large Granularity

[0 Concept 1: Give each recursive call a rank

Begin with rank O

Rank would be an optional argument to plet, etc.
Each recursive call gets (+1 current-rank)

The lower the rank the larger your granularity

Use randomization to give each process a chance to
reparallelize based upon its rank
Let x be the # of expected reparallelizations
[0 Chance of reparallelization for a process =
(1 / rank) * x
O Might be off by a factor of 2, but this is the general idea

This will work terribly when we recur heavily on the
cdr of a list

-22 -

Approximating Large Granularity

Using Rank

B If I am the maximum rank of the last 20
parallelization requests, I get to
reparallelize

[0 Works well for fib,

[0 Never get to reparallelize with mergesort -
might be okay

B If I am the max..., or there hasn’t been
reparallelization for the last 50 calls, and 1
am “near the top” in rank, I get to
reparallelize

-23 -

Approximating Large Granularity

ACL2 actually has a builtin granularity
function. What's it called? The measure.

Keep track of the measure during execution
to get an idea of what a “big” measure is

Derive a threshold based upon a weighted
average, where the weights are determined

by being above or below the regular
average

- 24 -

Approximating Large Granularity

What ideas do you all have?

- 25 -

Where Next?

Make running closures even cheaper

B Keep lists of spare processes and
semaphores

B Pull from this queue instead of
destroying old processes and
semaphores and creating new ones

B To a degree, having a semi-heavy
mechanism for creating threads is good,
because it keeps me honest

- 26 -

Where Next?

Fix pand/por bugs

Conduct experiments on optimal threads
allowed versus the number of
parallelization closures allowed to enqueue

Evaluate on 4-way machines
Continue researching previous work

Port concept to recursive functions in Java
— would open a whole new world

Tracing
Summing a tree

-27 -

Where Next?

Integrate parallelization constructs into the
theorem prover itself

B Parallelization constructs must most likely go

through a “proving” time before being integrated
so strongly

[0 Who wants a rollback? Definitely not Dr. Moore
and Dr. Kaufmann.

Rewriter

Waterfall - requires doing something with
output

Rule matching/free variable matching
Relieving hypothesizes

- 28 -

Overview

Constructs Added (plet, parallelize, pand,
por)

Discussion of Efficiency

B Top level vs. recursive parallelization

B Tests (Fib, Mergesort, Adaptive, Sum-tree)
Loose-ends

B Interrupting parallelization

B Shared memory vs. distributed

B |LISPs’ current thread support

Problem of Granularity
Future Work

- 29 -

