
FP in HOL
The story so far

Konrad Slind

School of Computing, University of Utah

November 20, 2006

Konrad Slind FP in HOL

Higher Order Logic

Logic built on top of typed lambda calculus

Originally due to Church (1940s)

First implemented by Gordon (early 1980s), by adapting
LCF implementation of Milner and colleagues

Now we have HOL-4, HOL-Light, ProofPower, and
Isabelle/HOL, all vital systems

Basically a kind of typed set theory that builds in functions

Not clear that HOL has anything to do with FP.

Konrad Slind FP in HOL

Basic FP in HOL

1980s

Gordon’s initial work developed some basic types
(numbers, pairs, lists) sufficient to do hardware verification
examples.

Melham (thesis) implemented a package for definition of
inductive datatypes

Each such definition provided induction and a so-called
primitive recursion principle

Theorem (Primitive Recursion Theorem for lists)
|- !e f. ?!fn. (fn [] = e) /\

(!n. fn (h::t) = f h t (fn t))

Konrad Slind FP in HOL

Basic FP in HOL

Illustrates standard methodology for HOL developments :
do not extend logic with new axioms, but instead derive
tools on top that use inference to mechanize general
theorems
For example,

Definition (Prim. Rec. FLAT)
|- (FLAT [] = []) /\

(FLAT(h::t) = h ++ FLAT t)

is introduced by constructing appropriate e and f instances
for the P.R. theorem and then deriving the specified
equations
Time consuming and possibly slow,
BUT cuts down on soundness bugs, and gives a nice
assurance story
Reasoning about prim. rec. functions over inductive
datatypes supported by custom induction principles.

Konrad Slind FP in HOL

1990s

Good start
BUT, from the point of view of FP’ers this is an
impoverished setting in which to write programs:

Only very simple patterns
Only very restricted kinds of recursion
Numerous other irritations

In 1990s systems emerged that dealt with some of these
problems

Fourman’s LAMBDA system (defunct)
TFL

Complex patterns
Arbitrary recursion (termination proofs required)
Per-function induction principles (following Boyer and
Moore)

Konrad Slind FP in HOL

TFL

Based on

Theorem (Wellfounded Recursion theorem)` WF R ^ (f = WFREC R M)) 9f :8x : f (x) = M (f jRx) x

Works by instantiating and manipulating WF Rec. thm
(proved in OL)

A parameterized implementation, instantiated to HOL-4
and Isabelle/HOL

Handles deep patterns, e.g.Okasaki-style Red-Black trees

Deals well with mutually recursive functions

Deals with nested recursive functions, but not well (since
improved by Matthews and Krstic, and recently by Krauss)

Konrad Slind FP in HOL

FLAT again

The following version of FLAT has more complex patterns and
also needs a termination proof in order to be admitted.

Definition (FLAT)
|- (FLAT [] = []) /\

(FLAT([]::rst) = FLAT rst) /\
(FLAT ((h::t)::rst) = h :: FLAT (t::rst))

Theorem (FLAT induction)
|- !P. P [] /\

(!rst. P rst ==> P ([]::rst)) /\
(!h t rst. P (t::rst) ==> P((h::t)::rst))

==>
!list. P list

Konrad Slind FP in HOL

Typical exercise

Depth first fold with graph represented as a function of type�! � list

which takes a node and delivers the children of the node.

DFSp : (�! � list)! (�! � ! �)! � list ! � list ! � ! �
DFSp G f seen [℄ acc = acc
DFSp G f seen (h :: t) acc =
if mem h seen

then DFSp G f seen t acc
else DFSp G f (h :: seen)(G h ++ t)(f h acc)

Konrad Slind FP in HOL

Depth-first search

Folds function f over directed, possibly cyclic graph

Applies f to each node and accumulating parameter acc

By instantiating f can get map, search, max, filter, etc
functions for such graphs

Perfectly acceptable functional program

Konrad Slind FP in HOL

Depth-first search

The functional representation of the graph allows infinite
graphs

Makes the function partial (if graph has an infinite number
of reachable nodes)

For example �x :[x + 1℄
HOL only supports total functions so DFSp wouldn’t be
admitted

How to repair (totalize)?

Konrad Slind FP in HOL

Depth-first search repaired

The fold will always terminate given a finite set of reachable
nodes. How to define reachability?

Definition (Reachability)

RG x y � mem y (G x)
reach G � RTC RG

reachlist G nodes y � 9x : mem x nodes ^ reach G x y

Thus, we want to constrain DFSp by finiteness of nodes
reachable from root nodes of graph.

Konrad Slind FP in HOL

Total DFS

DFS : (�! � list)! (�! � ! �)! � list ! � list ! � ! �
DFS G f seen to_visit acc =
if Finite (reachlist G to_visit)

then case to_visit
of [℄) accj (h :: t))

if mem h seen
then DFS G f seen t acc
else DFS G f (h :: seen)(G h ++ t)(f h acc)

else ARB

Konrad Slind FP in HOL

Nicer Presentation

` DFS G f seen [℄ acc = acc

Finite (reachlist G (h :: t))` DFS G f seen (h :: t) acc =
if mem h seen

then DFS G f seen t acc
else DFS G f (h :: seen)(G h ++ t)(f h acc)

Konrad Slind FP in HOL

Termination

In first recursive call, list of seen nodes doesn’t change, but
nodes still to visit shrinks

In second recursive call, seen nodes gets bigger and
nodes to visit can increase in size

So simple measures don’t work.

Recall that the set of reachable nodes is finite.

Idea. Let � be the lexicographic combination of the
number of reachable nodes not yet seen and the number
of nodes in to_visit.

Konrad Slind FP in HOL

Termination relation

Definition(G; f ; seen0; to_visit 0;acc0) � (G; f ; seen; to_visit ;acc)
iff(kreachlist G to_visit 0 n ListToSet seen0k; length to_visit 0) <lex(kreachlist G to_visit n ListToSet seenk; length to_visit)

In first recursive call h has been previously seen, so the set
of unseen reachable nodes does not change, and t is
smaller than h :: t .
In the second call, h is added to the seen list, and all of the
nodes reachable from the children of h are also reachable
from h itself. Thus the set of reachable nodes gets no
additions, and since the addition to the seen list was
previously reachable the size of the calculated set
decreases.

Konrad Slind FP in HOL

DFS induction

8P:0BBBBBB� 8G f s h t a:
P G f s [℄ a ^0BB� (Finite (reachlist G (h :: t)) ^mem h s) P G f s t a) ^(Finite (reachlist G (h :: t)) ^ :mem h s) P G f (h :: s) (G h ++ t) (f h a))) P G f s (h :: t) a) 1CCA 1CCCCCCA)8v v1 v2 v3 v4: P v v1 v2 v3 v4

Konrad Slind FP in HOL

Correctness

What does it mean for this fold on graphs to be correct?

All reachable nodes are visited

No unreachable nodes are visited

No reachable node is visited twice

How, though, do we capture the notion of visits?

We capture this notion by using cons as the folding
function given to DFS, so that the returned list is just the
visited nodes.

Konrad Slind FP in HOL

Visits

DFS with folding function f is equal to gathering all the visited
nodes and then folding f over the resulting list.

Theorem (DFS Fold)

Finite (reachlist G to_visit))
DFS G f seen to_visit acc=
foldr f acc (DFS G cons seen to_visit [℄)

Konrad Slind FP in HOL

Correctness

With this understanding, it suffices to prove that the invocation
DFS G cons seen to_visit [℄ contains no duplicate entries,
contains each node reachable from to_visit , and contains no
nodes not so reachable. The first property is

Theorem (DFS Distinct)

Finite (reachlist G to_visit)) all_distinct (DFS G cons seen to_visit [℄)
and the other two are phrased as

Theorem (DFS Reach)

Finite (reachlist G to_visit))8x : reachlist G to_visit x,
mem x (DFS G cons [℄ to_visit [℄)

Konrad Slind FP in HOL

Summary

Possible to go on and instantiate the various parameters of
DFS to get various simplifications

Simpler constraint assuring (but not characterizing)
termination : finite number of parent nodes in graph
DFS with adjacency lists

Konrad Slind FP in HOL

Adjacency lists

An adjacency list

A : (�� � list) list

gives a listing of nodes alongside their children.

toGraph converts an adjacency list into a graph.

Definition (toGraph)

toGraph al n =
case filter (�(x ;__): (x = n)) al
of [℄ ! [℄j (__; x) :: t ! x

Can then prove that DFS terminates when called on any
graph derived from an adjacency list

Konrad Slind FP in HOL

Unconstrained DFS

` DFS (toGraph A) f seen [℄ acc = acc
DFS (toGraph A) f seen (h :: t) acc =

if mem h seen
then DFS (toGraph A) f seen t acc
else DFS (toGraph A) f (h :: seen)((toGraph A) h ++ t)(f h acc)

Konrad Slind FP in HOL

Summary

Fun tutorial study

Formalization challenges (partiality, termination, visits, ...)

Need to do math in order to work with such programs (e.g.,
reachability)

Possibly of future use; could be added to a library

Konrad Slind FP in HOL

Current state of affairs

Programming total functions over inductive datatypes is
pretty well handled in most proof systems

Could always be improved, of course

Isabelle/HOL has a nice development of domain theory for
applications that need it.

But domains make life more complicated (lifting)

Support for lazy datatypes and functions over them, not
using domains, was pioneered by John Matthews, but is
still not mechanized well in any HOL implementation.

HOL systems have only simple types, and there doesn’t
seem to be much momentum for supporting more
expressive type systems.

Konrad Slind FP in HOL

Critique and a Response

Functions essentially trapped inside the formal system
(“Case studies are boring”)

Sterile environment?

But ACL2 community has shown that breaking free of the
proof system is possible

Emitting formal programs into outside world has many
benefits

Other systems have followed: PVS, Isabelle/HOL, HOL-4
all provide export for formal programs

Coq has a variety of solutions, both internal and external

Other systems (e.g., Matlab) also export programs and/or
hardware

Konrad Slind FP in HOL

What then?

Observation: programs are exported to the metalanguage

Lisp for ACL2, ML for Isabelle/HOL and HOL

Nice research project: export to mainstream languages like
Java or even C

However, current program export facilities exploit the fact
that the conceptual gap between the formal program and
the host PL is small

But what if we want to export to Java, C, or even hardware?

End up re-capitulating phases of compilation

But then the small gap gets ever wider ...

Konrad Slind FP in HOL

Compilation-by-proof

Our current research investigates ways to
specify functional programs as mathematics
prove correctness properties at the mathematics level
translate to assembly or hardware
translation done by proof , so result is guaranteed to return
the correct answers.

Amounts to compilation of logic functions, inside the logic
Two approaches to providing this:

Verified compiler. This is what is done traditionally
Translation validation. Recent alternative proposed by
Pnueli

Konrad Slind FP in HOL

Compilation-by-proof

Have built two prototype TV compilers for a very simple
functional language

hardware (with Mike Gordon)
ARM assembly (with Owens, Li, Tuerk)

Work is still very much in progress
Target example: Elliptic Curve Crypto (relatively efficient
replacement for RSA)

Formal theory of elliptic curves (on top of finite field theory)
Define recursive functions that implement, e.g., addition of
points on elliptic curves
Compile these to ARM assembly
formal ARM model in HOL-4

Konrad Slind FP in HOL

One approach

Try to do as much as possible by source-to-source
translations.

Start by translating to combinator form, then to ANF
(administrative normal form)

These end up being semantic versions of the standard
syntax bashing done in CPS translation

Register allocation done by standard graph-colouring
algorithm. Used to deliver an �-convertible version (nice
trick from Jason Hickey)

Maintenance of equality, by proof, from starting program

That’s the front end

Konrad Slind FP in HOL

TEA

` Rounds (n; (y ; z); (k0; k1; k2; k3); s) =
if n = 0w then ((y ; z); (k0; k1; k2; k3); s)
else Rounds (n � 1w ;

let s0 = s + 2654435769w in
let y 0 = y + ShiftXor (z; s0; k0; k1)
in ((y 0; z + ShiftXor (y 0; s0; k2; k3)); (k0; k1; k2; k3); s0)

Konrad Slind FP in HOL

After Front-end processing` Rounds (r0; (r8; r5); (r4; r3; r2; r6); r7) =
let v9 = (op =) (r0;0w)
in if v9 then ((r8; r5); (r4; r3; r2; r6); r7)

else let m2 = (op �) (r0;1w) in
let m4 = (op +) (r7;2654435769w) in
let r1 = ShiftXor (r5;m4; r4; r3) in
let r9 = (op +) (r8; r1) in
let r1 = ShiftXor (r9;m4; r2; r6) in
let r1 = (op +) (r5; r1) in
let ((m5;m3); (m1;m0;m6; r1); r0) =

Rounds (m2; (r9; r1); (r4; r3; r2; r6);m4)
in ((m5;m3); (m1;m0;m6; r1); r0)

Konrad Slind FP in HOL

Back end

Back end poof synthesizes a counterpart function to the
front end function. Then a tactic is executed to show the
two are equal.

In general, the backend is pretty conventional compiler
verification technology

We synthesize the IL semantics from the ARM semantics,
rather than relating two operational semantics

Main difficulty is dealing with memory

In particular, function call is hard.

Konrad Slind FP in HOL

Summary

To be done in near future: defunctionalization to support
higher order

Not mentioned: work on translating FP by proof to
hardware

Early days in this area, but I think it’s quite exciting

Konrad Slind FP in HOL

Recursion Schemes

TFL supports recursion schemes, by allowing free
variables in rhs, for example

Definition (While-loops)

While s = if B s then While (C s) else s:
While can also be defined directly

Connection with FP: Lewis, Shields, Meijer, Launchbury,
Implicit parameters: Dynamic scoping with static types

Konrad Slind FP in HOL

Polytypism

Polytypism (type-indexed functions) is becoming a basic
FP tool
Applications in logic:

Termination proofs
Normalization by Evaluation
Translation between representations (mapping to binary
format, to SAT, to LISP, etc)

In HOL systems, two ways to support it:
A polytypic function f is represented by a meta-level
function parameterized by a P.R. theorem (HOL-4).
Explicit definitions over type structure (Isabelle/HOL).

Konrad Slind FP in HOL

Type Classes

Actually, not so recent ...

Used extensively in Isabelle/HOL, but not the other HOL
systems

Supports some abstract algebra and number theory
hierarchies

Recent work from CMU translates type classes to ML
functors, offering a way to map formal developments from
Isabelle/HOL to HOL-Light

Konrad Slind FP in HOL

THE END

Konrad Slind FP in HOL

