Behind the Scenes of
PACIL.2

April 23, 2007
David L. Rager




Outline

m Parallelism Primitives

= Evaluation Strategy
® Producer/Consumer roles and implementation
= Early termination implementation

B Determining resource availability

= Work Accomplishments

m Future Work




Parallelism Primitives

m PCALL
 PLET
x PAND
x POR

® When parallelism resources are available,
parallel evaluation is introduced. When
resources are unavailable, these primitives
execute a serial equivalent




PCALL

m Logically the identity macro

® May evaluate the arguments to a function call in
parallel and applies the function to the results of
the evaluation

® Example form:
(defun pfib (x)
(cond ((or (zp x) (<= x 0)) 0)
((= x 1) 1)
(t (pcall (binary—+ (pfib (- x 1))
(pfib (- x 2)))))))




PLET

m Logically equivalent to LET

®m May evaluate variable bindings in parallel and
applies a closure created from the body of the plet
to the results of the binding evaluations

® Example form:
(defun pfib (x)
(cond ((or (zp x) (<= x 0)) 0)
((=x 1) 1)
(t (plet ((fibx-1 (pfib (- x 1)))
(fibx-2 (pfib (- x 2))))
(+ £fibx-1 fibx-2)))))




POR

B Logically similar to OR

B May evaluate its arguments in parallel, evaluates
their disjunction, and returns a Boolean result
= (or (atom x) (car x)) is guard-verifiable
= (por (atom x) (car x)) is not guard-verifiable

= Boolean result to maintain consistency between
executions

® Example form:
(defun invalid-tree (x)
(1f (atom x)
(invalid-tip x)
(por (invalid-tree (car x))
(invalid-tree (cdr x)))))




PAND

B Logically similar to AND

B May evaluate its arguments in parallel, evaluates
their conjunction, and returns a Boolean result
® (and (consp x) (car x)) is guard-verifiable
= (pand (consp x) (car x)) is not guard-verifiable
= Boolean result to be consistent with POR

m Example form:
(defun wvalid-tree (x)
(1f (atom x)
(valid-tip x)
(pand (valid-tree (car x))
(valid-tree (cdr x)))))




PAND/POR

B Remember that PAND and POR have eatly
termination conditions

® (pand (car x) (cdr x)) may never evaluate (car x)




Outline

m Parallelism Primitives

= Evaluation Strategy
m Producer/Consumer roles and implementation
= Early termination implementation

B Determining resource availability

= Work Accomplishments

m Future Work




Work Producer/Consumer
Implementation

= Who is the first work producer?

= You!

= How do you become a work producer?

® Use a parallelism primitive




Work Producer/Consumer
Implementation

® Brainstorm ideas on how we could
implement a work producer

® The producer could evaluate the work itself
m (plet ((x (foo n)) (v (bar n))) (+ xy))

= The producer itself could evaluate closures that represent
(foo n) and (bar n)

= Does this result in any speedup?

® No. (of course not)




Work Producer/Consumer
Implementation

® Brainstorm ideas on how we could
implement a work producer

® The producer could evaluate the work itself

m A piece of work would contain
= A closure
= Result array (place to store the result)

= An index into the array




Work Producer/Consumer
Implementation

® Brainstorm ideas on how we could
implement a work producer

® The producer could spawn threads

m Create the threads to evaluate the work you want
done in parallel

= OpenMCL allows you to tell a starting thread which
function to run

= This function could evaluate a piece of work, store the
result in a shared variable, and signal a semaphore to let the
producer know when it’s done.
m Once all the child work is finished, the producer can
apply the specified function to the results and return
the answer




Work Producer/Consumer
Implementation

® Brainstorm ideas on how we could
implement a work producer

® The producer could spawn threads

m A piece of parallelism work would contain
= Closure
= Result array (place to store the result)
= An index into the array

= Semaphotre (for signalling the parent when the result is
stored)




Work Producer/Consumer
Implementation

® The producer could spawn threads

m Advantages:

= The spawned threads expire after finishing evaluating their
work, freeing OS resources

m Disadvantages:

= No buffering of work — parallelism is either actively
introduced and evaluated or the producer decides to
evaluate serially

= Creating threads takes time. Spawning a thread for each
parallel computation results in a 10x slowdown (see draft of
thesis for details).




Work Producer/Consumer
Implementation

m Brainstorm ideas on how we could
implement a work producer
® The producer could push the work on a global

work queue, and other threads could be
standing by to evaluate the work.

= Requires someone to make sure there are an
appropriate number of idle “wotker” threads
m The producer can handle that much!
= Requires someone to say when more work has
been added to the system

m The producer can handle that much!




Work Producer/Consumer

Implementation
m Worker Threads

® The producer could push its work on a work
queue

m Advantages

= OpenMCL allows you to tell a starting thread which
function to run

m This function could wait until work is added to the system,
calculate (foo n), store the result somewhere, signal a
semaphore to let us know when it’s done, and rewait.

= Don’t pay 10x overhead for spawning new threads
= Work is buffered

m Disadvantages

= Worker threads standing-by should be given a way to expire

= We do this for OpenMCL via a timed wait and
throw/catch pair described in the code and paper




Work Producer Implementation

= A work producer is tesponsible for:
= Putting pieces of parallelism work on the work queue
s Creating the worker threads if necessary, and
= Signaling the correct variables to ensure that this work gets
evaluated
m A piece of parallelism work contains:
Closure
Result array (place to store the result)
An index into the array

Semaphore (for signalling the parent when the result is
stored)

Terminate early function (for terminating early)
Thread-array (also for terminating early, more later)




Work Consumer Implementation

®m Worker threads begin as wotk consumers

m Responsible for:
m Taking work off the work queue
= Evaluating it
s Terminating irrelevant related work

= Saving the result

B Messy implementation mechanisms
= Unwind-protects with interrupts disabled during cleanup
m Special/thread-local variables
s Two different throw/catch tag pairs
= Optimistic CPU core grabbing

“Forever” loops




Work Consumer Implementation

® How many worker threads do we need?

= A worker thread is in one of four states:
m Idle (waiting for wotk and CPU core)
m Started (it has a piece of work and is consuming CPU cycles)

m Pending (it has become a producer and is now waiting for child
work to finish evaluating)

m Resumed (its child work has finished evaluating)

m If pis the number of CPU cores, then we want the sum
of the number of idle and active (started + resumed)
threads to be 2p

= Any time a producer adds a piece of parallelismm work to
the wotk queue, it spawns a number of worker threads,
such that the number of idle and active threads is 2p




Outline

m Parallelism Primitives

= Evaluation Strategy
® Producer/Consumer roles and implementation
m Farly termination implementation

B Determining resource availability

= Work Accomplishments

m Future Work




Early Termination Implementation

m Three ways for work to be terminated:
® A sibling decides the result is irrelevant

= A sibling of the parent decides the result is
irrelevant

® The user decides that the result is irrelevant

m The code for this case is the exact same as the
second case, so its further discussion is omitted




Early Termination Implementation

m A sibling decides that the result is irrelevant

= This involves the sibling:
m Removing all its siblings’ work from the work queue and
m Interrupting all its siblings with a function that aborts
work evaluation (this is one of those throw/catch pairs I
mentioned earlier).
= The abortion process is done in a certain order and
uses low-level variables to ensure that work that’s
between the “off the work-queue” and “active”
stages is always aborted.




Early Termination Implementation

m A parent decides that the result is irrelevant

= This involves the parent:
m Removing all its *child* wotk from the work queue and
m Interrupting all its children with a function that aborts
parallelism work evaluation (this is the same throw/catch
pairs I mentioned in the previous slide).
= The abortion process is done in a certain order and
uses low-level variables to ensure that work that’s
between the “off the work-queue” and “active”
stages is always aborted.




Outline

m Parallelism Primitives

= Evaluation Strategy
® Producer/Consumer roles and implementation
= Early termination implementation

B Determining resource availability

= Work Accomplishments

m Future Work




Determining Resource Availability

m Two types of resources:

m Threads

® Need to limit the number of threads, so that the OS
doesn’t blow us up

m Goal: max-out total count of threads around 50 (ot
some other semi-arbitrary number)

m CPU Cores
m Need to keep CPU cores busy
m Need to minimize context-switching

m Goal: Keep total number of active threads equal to
the number of CPU Cores (8 in this presentation)




Determining Resource Availability

m T'hreads

® Need to limit the number of threads, so that the OS
doesn’t blow us up

® Solution: The heuristics that the producer uses to determine
whether to parallelize computation will always result in serial
evaluation if there are more than 50 pieces of work in the system
at any point

= Why do we need to limit the work? Why not just limit the number
of threads spawned?

m All work that enters the parallelism system must be dealt with
somehow (either via evaluation or early termination). Since
the only way to evaluate work is with a worker thread, if the
work is added, the worker thread must be spawned. We
therefore must limit the work at the root, where it is added.




Determining Resource Availability

m CPU Cores

= Need to keep CPU cores busy

m Supposing there are p CPU cores, there will always
be around p pieces of work on the work queue.

m Note that once a worker thread grabs a piece of
work, that it is not on the work queue.

m The work queue, therefore acts as a buffer that allows
worker threads to immediately grab another piece of
work once they finish evaluating their current piece




Determining Resource Availability

m CPU Cotres

= Need to minimize context-switching

m A wotker thread is in one of four states:
= Idle (also referred to as “standing by” eatlier in this presentation)
m Started (it has a piece of work and is consuming CPU cycles)

® Pending (it has become a consumer and is now waiting for child
work to finish evaluating)

= Resumed (its child work has finished evaluating)
m Note that unless the worker thread becomes a parallelism

producer, a worker thread’s lifecycle only consists of the first
two phases

m A worker thread is considered active if it is in the started or
resumed state

m Supposing there ate p CPU cores, there should be p active
threads at any moment. But wait...




Determining Resource Availability

m CPU Cotres

= Need to minimize context-switching

m Supposing there are p CPU cores, there should be p active
threads at any moment. But wait...

m What happens when there are eight srarted wotkers, and a
worker needs to resume? Can the resuming worker pre-empt
one of the srarted wotkers somehow? Does it matter?

= Often the closure being applied to results of evaluating arguments
in parallel is faster than the argument evaluations

= It would therefore be nice to able to get this application “out of
the way” and free the resuming worker thread for further
parallelism work evaluation




Determining Resource Availability

m CPU Cotres

= Need to minimize context-switching

= What happens when there are eight started workers, and a
worker needs to resume? Can the resuming worker pre-empt
one of the started workers somehow?

= It is complicated to interrupt a started worker and tell it to pause
until the resumed thread is done. So we don’t pre-empt the
started thread.

m Instead, we let the resumed thread to run.
®m But how? Is there a limit to the number of resumed threads?

® Yes, let’s explain the implementation




Determining Resource Availability

m CPU Cotres

= Implementation of started and resuming thtead CPU
cote sharing

m Before a starting worker thread can actually start, it will check a
shared variable, namely *idle-core-count®, to ensure that it is >
0. This count is decremented once the thread passes this check.

m This ensures that a starting thread will never consume CPU
cycles, unless there are cycles to spare

m Before a resuming wotrker thread can actually resume, it will
check the same shared variable, namely *idle-core-count*, to
ensure that it is > (-p).

= This ensures that a resuming thread will never be context-
switching with more than one other thread.

= We hope the OS can handle scheduling two threads on one CPU
core.




Tying Resource Availability to the
Producer

m A producer will only add work to the work queue if the
following three conditions are true:
Parallelism is enabled

The total amount of active work and work in the work queue and is
less than twice the number of CPU cores

The total amount of work already in the system is less than a
somewhat arbitrary limit (50 in the previous slides).

= Notice that there is nothing about the number of idle CPU
cores in this heuristic, just that there 1s enough wotk in the
work queue. The work consumer handles the idle CPU
cotre problem.




Tying Resource Availability to the
Consumer

= A worker thread will only begin work evaluation if the
following two conditions are true:
m There is an idle CPU core

m There is a piece of work to grab

= Notice that there is nothing about the number of worker
threads. The work producer handles this problem.




Outline

m Parallelism Primitives

= Evaluation Strategy
® Producer/Consumer roles and implementation
= Early termination implementation

B Determining resource availability

m Work Accomplishments

m Future Work




Work Accomplishments

Separation of work producer and work producer roles (in
both explanation and code), even though it could be a mess
since worker threads can be both producers and consumers

Noticeable speedup on problems with relatively little GC.

Matches and beats speedup of lazy if evaluation by using
early termination

Provides a logical foundation for a distributed ACL2

A side-effect of the work is an interface for using LISP-level

parallelism primitives in LISP
= signal-semaphore, signal-condition-variable, make-lock, etc...




Outline

m Parallelism Primitives

= Evaluation Strategy
® Producer/Consumer roles and implementation
= Early termination implementation

B Determining resource availability

= Work Accomplishments

m Furure Work




Future Work

m Pcall and plet don’t have early termination cases. The
parallelism overhead could be reduced if the early
termination code was removed for these two primitives.
The need to handle uset-level interrupts mitigates the
benefits gained from removing the eatly termination code.

I kind of wish pcall was called par, or that pcall was
structured like funcall. It took me awhile to come around
to this viewpoint. Maybe I really want pfuncall. What
exists right now is really peval, except macros are
disallowed.

Have the producer immediately acquire a piece of work
from the work queue instead of waiting for the children to
finish. This is messy when thinking about early
termination, so it’s been avoided so far.




Future Work (cont’d)

m Create a futures interface
= There’s nothing simpler than the identity function

m Would allow parallel evaluation of only some let
bindings instead of all of them without requiring two
let statements

m Parallel garbage collectors




Conclusion

m Parallelism Primitives

= Evaluation Strategy
® Producer/Consumer roles and implementation
= Early termination implementation

B Determining resource availability
= Work Accomplishments

m Future Work




Questions




