Language-Based Information-
Flow Security
(Sabelfeld and Myers)

“"Practical methods for controlling information
flow have eluded researchers for some time.”

Presented by David L. Rager

“Conventional” Approach

Access control lists (ACLS)

B Checks release of data but not data
propagation

B What happens if a host becomes
unknowingly corrupted?

B Approach is fundamentally doomed
Firewalls

Anti-virus
Encryption

Language-based Attempts

Java

B Bytecode verifier
B Sandbox mode
B Stack inspection

Not intended to control information

flow, and therefore insufficient

The "New” Approach

Information-flow policies

B “confidentiality policies we wish to
enforce”

B "A natural way to apply the well-known
systems principle of end-to-end design”

Information-flow controls

B Mechanisms that implement the above
policies

Terminology

Confinement — the ability to prevent
capabilities (and authority) from being
transmitted improperly

Noninterference — no data visible publicly is
affected by confidential data

"High” security versus “low” security — the
idea that some code and data is associated
with being inaccessible and other code and
data is public (these are not technical
terms)

Covert Channels

Channel — a mechanism for signaling
information through a computing
system

Covert channel — a channel whose
primary purpose is not information
transfer

Types of Covert Channels

Implicit flows - signal information through
the control structure of a program

Termination channel - signal information
through the termination or nontermination
of computation

Timing channel - signal information
through the time at which an action occurs
rather than through the data associated
with the action

Types of Covert Channels (cont'd)

Probabilistic channel - signal information
by changing the probability distribution
of observable data

Resource exhaustion channel - signal
information by the possible exhaustion
of a finite, shared resource

Power channel — embed information in
the power consumed by the computer

Four Directions of
Language-Based Security

Enriching expressiveness of the
language

Exploring impact of concurrency
Analyzing covert channels
Refining security policies

Four Directions of
Language-Based Security

noninterference
[47]. [49]. [50]

static
certification [40], [62

procedures [63]

eclassification
2]. [4]. [64]. [65]

admissibility
[68], [69]

relative
security [70]

sound security analysis [3]

nondeterminism termination
[17], [66] [67]
cxceptions timing [10])

7]. [14], [67]
probability quantitative

: _ " distributi)
C objects [7], [13] > E;tll]l 1[1;1;)]11 91 [11] security
|
!

[73], [74]
' |

| |
¥

A ¥ . .
EXPressivensss CONCUITENCY covert channels secunity IJOIICIE:S

EXpressiveness

Polymorphism

B The function h can be overloaded to
have different definitions depending on
whether its context is high or low

Functions

B Slam is based off the lambda calculus
and proposes a type system for
confidentiality and integrity

Expressiveness (cont'd)

Exceptions

B Path labels can be used to allow finer-grained
tracking of implicit flows caused by exceptions

Objects

B JFlow language extends Java with a type system
for tracking information flow

B Barthe and Serpette created an OO language
based on Abadi-Cardelli functional object calculi
and show their type system enforces
noninterferance

Four Directions of
Language-Based Security

static

certification [40], [62

procedures [63]

functions [5]

exceptions

7], [14]. [67]

¥

expres sIVeness

threads [6]

noninterference
[47]. [49]. [50]

eclassification
2]. [4]. [64]. [65]

admissibility
[68], [69]

relative
security [70]

timing [10]

distribution
[71], [72]

Y
CONCUITENCY

quantitative
security

[73], [74]

covert channels security policies

Concurrency

Nondeterminism

B Consider the observable behavior of the
program to be the set of its possible
results

B Secure if high inputs do not affect the
set of possible low outputs

B Possibilistic security

Concurrency

[hread concurrency
B If two high security programs execute in
parallel, they can “do evil”

Example

High assurance level program 1:
h:=0; l:= h // secure since 0 is a public constant

High assurance level program 2:

h:=h’ // if this program interleaves in program 1°'s
execution, then h’ will become public

Concurrency

Distribution

B Messages are exchanged and these
exchanges can often be observed

B Often distributed systems don't
completely trust each other

B Components of distributed systems can
fail (or be subverted)

Four Directions of
Language-Based Security

static

certification [40], [62

procedures [63]

functions [5]

exceptions

7], [14]. [67]

¥

expres sIVeness

threads [6]

noninterference
[47]. [49]. [50]

eclassification
2]. [4]. [64]. [65]

admissibility
[68], [69]

relative
security [70]

timing [10]

distribution
[71], [72]

Y
CONCUITENCY

quantitative
security

[73], [74]

covert channels security policies

Covert Channels

Termination Channels

B If an attacker can observe termination some
programs are insecure

B EX:
while h = 1 do skip

Solution
B No while loop may have a high guard

B No high conditional may contain a while loop in
its branch

Covert Channels

O Timing Channels

B If an attacker can observe termination some
programs are insecure

B Ex (C,,4 Is a series of time consuming operations):
if h = 1 then C,, else skip

[0 One solution to this example

B No high conditional may contain a while loop in its
branch

B Wrap each high conditional in a protect statement
whose execution is atomic

[0 Practical example: RSA encryption attack[101]

Covert Channels

Probabilistic Channels
EX:
:=PIN []9/10 l:=rand(9999)

[lo/10 Mmeans perform the left side 90% of the time and the right side
10% of the time

B Possibilistically secure
B Why isn't it probabilistically secure?

Four Directions of
Language-Based Security

static

certification [40], [62

procedures [63]

functions [5]

exceptions

7], [14]. [67]

¥

expres sIVeness

threads [6]

noninterference
[47]. [49]. [50]

eclassification
2]. [4]. [64]. [65]

admissibility
[68], [69]

relative
security [70]

timing [10]

distribution
[71], [72]

Y
CONCUITENCY

quantitative
security

[73], [74]

covert channels security policies

Security Policies

[0 Declassification

B Noninterference rejects downgrading of security
levels

B Think of cryptography
0 Admissibility
B Explicitly states which dependencies are allowed

between data (including those caused by
downgrading)

B An admissible program has no other information
flows than those intended by the protocol
specification

[0 Quantitative security
B A limited number of information leaks is acceptable

Open Challenges

System-wide security

B Correctly integrating particular security
implementations into a system is hard

Certifying compilation
B Must trust the type checkers and compilers

B Remember Robert’'s Openmcl presentation?
B A solution: proof carrying code

Abstraction-violating attacks
B EXx: cache attacks
Dynamic policies

B Need to support the changing of permissions
across the lifetime of data

Conclusion

Conventional methods of security (access
control lists, virus detection, firewalls)
insufficient

Four Directions of

Language-Based Security

B Enriching expressiveness of the language

B Exploring impact of concurrency on security
B Analyzing covert channels

B Refining security policies

