Formal Verification of
LabVIEW Programs
with ACL2:
Progress Report on Handling State

Matt Kaufmann

April, 2008

OUTLINE

» Background
» The problem of state
» Hierarchy (work in progress)

OUTLINE

» Background

» Brief history
» ACL2 representation
» Main verification idea

» The problem of state
» Hierarchy (work in progress)

BRIEF HISTORY

>

Jeff Kodosky started playing around in 2004 with the idea
of verifying a LabVIEW program.

Warren Hunt and J Moore met on occasion with Jeff and
Jacob Kornerup over several years, culminating with NI
engaging Grant Passmore as an intern in 2005.

Grant developed an approach to prove Gauss'’s theorem
that the sum of the integers from 1 to n is n*(n+1)/2.
Summer 2007: Matt Kaufmann developed an alternate
approach to model LabVIEW programs, including loop
structures, directly as ACL2 functions. Grant updated the
infrastructure accordingly.

Fall 2007: Grant transferred infrastructure support to Mark
Reitblatt, NI intern from UT CS. Mark has worked with Matt
on further automating the loop verification.

Since then: Matt has been working on extending the
previous work to handle LabVIEW diagrams with state.
Also, Mark has looked into applying model checking.

ACL2 REPRESENTATION, p. 1

» Every module, primitive or not, takes and returns a single
alist that we call a record, by calling S+, “set”.

» Every wire returns a LabVIEW data value, obtained by
applying G, “get”, to a record.

ACL2 REPRESENTATION, p. 2

(DEFUN X0
(DEFUN YO
(DEFUN NO
(DEFUN WO
(DEFUN NL
(DEFUN Z0

TO (+
:TO (NO IN)))
- TO (
TO (

(X0 IN) (YO IN))))

MAIN VERIFICATION IDEA

» An assertion is simply a Boolean-valued wire that can be
checked at runtime.

» Goal: prove that each assertion is true

» Earlier focus: For-loops and while-loops

OUTLINE

» Background
» The problem of state :

» Producer-consumer scenario

» Valid traces

» A simple producer-consumer example using global
variables

» A simple producer-consumer example using a feedback

loop
» Atomic read-modify-write using sub-VIs

» Hierarchy (work in progress)

File Edit View Project Operate Tools Window Help

O[] (][] balRor

Producer-consumer scenario (p. 1)

state-3.vi' Block Diagram

e [= | 7
=
bi al
ad-b reac-a
B
i : m
B =
| o
[m] = = =

10

Producer-consumer scenario (p. 2)

N1: W B, 1 N5: W A 2
N2: Rd B N6: W B, 2
N3: W A 1

N4: Rd A

We want to prove the following.

» N4 reads 1 or 2 for A.
» If N2 reads 2 for B, then N4 reads 1 for A.

Valid traces (p. 1)
For “If N2 reads 2 for B, then N4 reads 1 for A”: This theorem
will be stated as a property of all valid computation traces —
node sequences.

N1: W B, 1 N5: W A 2
N N

N2: Rd B >? N6: W B, 2
N

N3: W A 1

N

NA: Rd A

12

Valid traces (p. 1)

For “If N2 reads 2 for B, then N4 reads 1 for A”: This theorem
will be stated as a property of all valid computation traces —

node sequences.

N1: W B, 1 N5: W A 2

AN AN

N2: Rd B >? N6: W B, 2

AN

N3: W A 1

AN

NA: Rd A

We specify node pairs (N . N’) such that N must fire before N’

(valid-tracep-setup stl

((n1 .
(n2 .
(n3 .
(n5 .

n2)
n3)
n4)
né)))

13

Valid traces (p. 2)

Generated by above val i d-tr acep- set up call:

(DEFUN ST1$VALI D- TRACEP (LST)

(AND (NO- DUPLI CATESP- EQUAL LST)
(PREC- LST (ST1$PREC-REL) LST)))

Examples:

ACL2
T

ACL2
T

ACL2
T

ACL2
NI L
ACL2
NI L
ACL2

I'>(st1$valid-
I>(st1$valid-
I>(st1$valid-
I'>(st1$valid-
I>(st1$valid-

1>

tracep (reverse
tracep (reverse
tracep (reverse
tracep (reverse

tracep (reverse

' (n1
C(n1
C(n1
' (n4

"(n2

N2 n3 n4 n5 né)))
n5 n2 n3 n6 n4)))
n5 n2)))
n5 né)))

n1)))

14

Valid traces (p. 3)

Consider:

:transl (valid-tracep-setup stl

((n1 .
(n2 .
(n3 .
(n5 .

n2)
n3)
n4)
né)))

Here we edit away some output. Note that some hints use

functional instantiation.

15

Valid traces (p. 4)

(PROGN (DEFUN ST1$PREC- REL ()

"((NL . N2)
(N2 . N3)
(N3 . N4)
(N5 . N6)))

(DEFUN ST1$VALI D- TRACEP (LST)
(AND (NO- DUPLI| CATESP- EQUAL LST)
(PREC- LST (ST1$PREC-REL) LST)))
(DEFTHM ST1$VALI D- TRACEP- FORWARD- TO- NO- DUPLI CATESP- EQUAL
(I MPLI ES (ST1$VALI D- TRACEP TRACE)
(NO- DUPLI CATESP- EQUAL TRACE))
: RULE- CLASSES : FORWARD- CHAI NI NG
(DEFTHM ST1$VALI D- TRACEP- FORWARD- TO- PREC- N1- N2
(I MPLI ES (AND (ST1$VALI D- TRACEP TRACE)
(MEMBER- EQUAL ' N2 TRACE))
(MEMBER- EQUAL ' N1
(MEMBER- EQUAL " N2 TRACE)))
: RULE- CLASSES : FORWARD- CHAI NI NG
simlarly for N2-N3, N3-N4, N5-N6
(DEFTHM ST1$VALI D- TRACEP- FORWARD- TO- PREC- N1- N2$2
(1 MPLI ES (AND (ST1$VALI D- TRACEP TRACE)
(EQUAL ' N2 (CAR TRACE)))
(MEMBER- EQUAL ' N1 (CDR TRACE)))
: RULE- CLASSES : FORWARD- CHAI NI NG
simlarly for N2-N3$2, N3-N4$2, N5- N6$2
(1 N- THEORY (DI SABLE ST1$VALI D- TRACEP))
(DEFTHM ST1$VALI D- TRACEP- CDR
(I MPLI ES (ST1$VALI D- TRACEP TRACE)
(ST1$VALI D- TRACEP (CDR TRACE))))
(DEFTHM ST1$VALI D- TRACEP- MEMBER- EQUAL
(I MPLI ES (ST1$VALI D- TRACEP TRACE)
(ST1$VALI D- TRACEP (MEMBER- EQUAL NODE TRACE))))
(DEFCONST *ST1$NODES+ " (N1 N5 N6 N2 N3 N4)))

OUTLINE

» Background
» The problem of state :

Producer-consumer scenario

Valid traces

Producer-consumer with global variables
Producer-consumer with a feedback loop
Atomic read-modify-write using sub-Vls

vV VY VY VvYy

» Hierarchy (work in progress)

16

17

DISCLAIMER

» We're skipping most technical detail (time limitations).

» See. | i sp files (certified books) for details, including
some interesting technical challenges. I'm happy to serve
as tour guide.

18

Producer-consumer with global variables (p. 1)

We return to the example already presented:

Nl: W B, 1 NS: W A 2
N2: Rd B N6: W B, 2
N3: W A 1

N4: Rd A

We want to prove the following.

» N4 reads 1 or 2 for A.
» If N2 reads 2 for B, then N4 reads 1 for A.

The next slides illustrate our translation.

10

Producer-consumer with global variables (p. 2)

Basic node and wire functions are based on the state at the
time the node or wire gets its value, e.g.:

; Node N3 does a wite, so returns nothing:
(defun n3@(in st)
nil)

: Node N4 returns a record wwth the val ue of A.
(defun nd@ (i n st)
(s* :t0 (g :a st)))

; This wire (for termnal TO of N4) is the val ue
; that has been read for A
(defun n4-t0@ (i n st)

(g :t0 (nd@in st)))

20

Producer-consumer with global variables (p. 3)

Next, we say how state is updated.

(defun st1$state-step (node in st)

(case node
(n1 (s :b1lst)); WHB 1
(N3 (s:alst)) ; WA 1
(n5 (s :a2st)) ; WA 2
(n6 (s :b2st)) ; W B, 2
(otherwi se st)))

(defun stl$state-rec (in st trace)
(if (consp trace)
(stl1$state-step (car trace)
in
(stl$state-rec in st (cdr trace)))

st))

(defun stl1$state (node in st trace)
(stl$state-rec in st (cdr (nmenber-equal node trace))))

21

Producer-consumer with global variables (p. 4)

Then, we define the actual node and wire functions in terms of
the state as of the time the diagram is first entered, e.g.:

; Node N3 does a wite, so returns nothing:
(defun n3 (in st trace)
(n3@in (stl$state 'n3 in st trace)))

: Node N4 returns a record with the value it reads.
(defun n4 (in st trace)
(nd@in (stl$state 'nd4 in st trace)))

; This wire (for ternminal TO of N4) is the val ue
: that has been read.
(defun n4-t0 (in st trace)

(n4-t0@in (stl$state 'nd4d in st trace)))

29

Producer-consumer with global variables (p. 5)

Example that evaluates to T:

(let ((trace (reverse '(nl1 n2 n3 n4 n5 n6))))
(and (stil$valid-tracep trace)

EEEGRE
£53%

Rd

(equal

W>>> W

N

(n4 nil

"((:TO .

"((:a .
1)))))

0) (:b .

0)) trace)

22

Producer-consumer with global variables (p. 6)
First Theorem: N4 reads 1 or 2. The following invariant could
be automatically generated. Proof using functional instantiation
replaces explicit induction by a base and an induction step.

(defun stil$state-invl (in st trace)
(i nplies (menber-equal 'n3 trace)
(menmber-equal (g :a (stl$state-rec
in st trace))

'(12))))
The key observation is that N4 is after N3:

N3: W A 1
NA: Rd A

The invariant then yields the theorem:

(inmplies (and (stl$valid-tracep trace)
(subset p- equal =*st 1$nodes* trace))
(rmenmber-equal (n4-t0 in st trace) '(1 2)))

24

Producer-consumer with global variables (p. 7)

Second Theorem: If N2 reads 2 for B, then N4 reads 1 for A.

(implies (and (stl$valid-tracep trace)
(subset p- equal *st 1$nodes* trace)
(equal (n2-t0 in st trace) 2))
(equal (n4-t0 in st trace)

1))

5

Producer-consumer with global variables (p. 8)

NL: W B, 1 N5: W
N2: Rd B [2] N6: W
N3: W A 1
N4: Rd A [17]

A,
B

2
2

Our reasoning goes as follows.

N6 << N2 {by invariant:}

If NI << N and not N6 << N, then value of Bis 1
N4 reads 1 for A {by invariant:}

If N5 << N3 << N, the value of Aat Nis 1

The user is expected to create the two invariants, but our .lisp
file suggests that the system could then prove them
automatically.

26

Producer-consumer with global variables (p. 9)

The above example is file st at e- 1. | i sp. We have created
two elaborations:

» state-2.1isp
Re-working of st at e- 1. | i sp, reading directly from
inputs instead of using constants.

» state-3.1isp

Re-working of st at e- 2. | i sp, but using proper wires for

inputs and thus using mutual-recursion for wire, node, and
state functions.

OUTLINE

» Background
» The problem of state :

Producer-consumer scenario

Valid traces

Producer-consumer with global variables
Producer-consumer with a feedback loop
Atomic read-modify-write using sub-Vls

vV VY VY VvYy

» Hierarchy (work in progress)

27

28

Producer-consumer with a feedback loop (p. 1)

The key element for this version of the problem is a latch VI,
which is non-reentrant : only one instance is being evaluated at
atime.

File st at e- 4. | i sp includes this “wonderful” graphic:

;- owrp - | |

; -- din-- | ITE| -- out --
; st -- | | Vv

; e |
;0] |

The main VI instantiates two different (but isomorphic) such
latches, A and B, each three times (two writes and one read,
each):

Producer-consumer with a feedback loop (p. 2)

state-4.vi'Block Diagram =) (3]
File Ecit View Project Operate Tooks Window Help
- B
|
1
il
ad-h =
1230
B | O *
L] ;D) 23]
B @] o8
&
b2
B
|

Producer-consumer with a feedback loop (p. 3)

This example is similar to the earlier one, though more complex.
We see a first attempt to handle hierarchical state elements.

(defun st1$state-step (node in newst st trace)
(decl are (xargs :neasure (stl$neasure node trace :state-step)))
(if (and (st1$valid-tracep trace)
(member - equal node trace))
(case node
(nl (s :latch-b ; WR B, bl
(latch-b{post-state} (s* :wp (nl-wp-t0 in st trace)
:din (in-bl in st trace))
(g :latch-b newst))
new st))
(n2 (s :latch-b ; Rd B
(latch-b{post-state} (s* :wp (n2-wp-t0 in st trace)
:din 0)
(g :latch-b newst))
new st))

(ot herwi se newst))
new st))

21

Producer-consumer with a feedback loop (p. 4)
The proofs of the two theorems are similar to the earlier ones.
But there are no “@ functions — state as of entry to a node
doesn’t tell you the state at input wires. (Initially I got this
wrong!)

However, we first need to prove invariants about the bits of
state indicating whether the feedback element has ever been
entered, e.qg. for Latch A:

(inplies
(st1l$valid-tracep trace)
(let ((n3p (nmenber-equal 'n3 trace))
(n5p (nmenber-equal 'n5 trace)))
(equal (g :st{first}
(g :latch-a
(stl$state-rec in st trace)))
(if (or n3p n5p)
nil
(g :st{first} (g :latch-ast))))))

OUTLINE

» Background
» The problem of state :

Producer-consumer scenario

Valid traces

Producer-consumer with global variables
Producer-consumer with a feedback loop
Atomic read-modify-write using sub-Vls

vV VY VY VvYy

» Hierarchy (work in progress)

29

Atomic read-modify-write using sub-Vis (p. 1)
Sub-VIInc, st at e-5. | i sp (to be fixed like st at e- 4. | i sp):

en -- | [

stO -- | 1+ | -- out --
; /" | I v
SN |
;0 | |

Main VI from st at e- 5. | i sp: two writes, then a read.
N1: | nc[En=T] N2: | nc[En=T]

N3: I nc[En=NIL]
Theorem proved:
(implies (and (viO$valid-tracep trace)
(g :stO{first} (g :inc st))

(subset p-equal =*vi 0$nodes* trace))
(equal (n3-out in st trace) 2))

22

OUTLINE

» Background
» The problem of state:

Producer-consumer scenario

Valid traces

Producer-consumer with global variables
Producer-consumer with a feedback loop
Atomic read-modify-write using sub-Vls

vV VY VY VvYy

» Hierarchy (work in progress)

24

25

Hierarchy (work in progress)

We do not yet handle loops with state. Work in progress:

» A rather detailed 6-page plan that could deal nicely with
loops and other hierarchy

» Main idea: notion of node is extended to hierarchical node:
in essence, a path of enclosing node instances down
towards a leaf node.

» A trace is then a list of hierarchical nodes. A valid trace
must respect loop indices, in particular.

26

Conclusion (p. 1)

There’s a good start on handling state:

» Trace model, with helpful (and proved) supporting rules
» Examples have been worked
» Hierarchy has been considered

The next step is to implement the hierarchical approach to work
the motivating example from Jacob Kornerup:

There are two loops with 100 iterations each, one
incrementing and the other decrementing a global
integer at each iteration. The increment/decrement
operations are atomic. Prove that the final value of the
global equals its initial value.

27

Conclusion (p. 2)

Guiding principles to balance are the following.

» Work simple examples to develop methodologies.
» But keep in mind future automation and scalability.
» And use a suitable translation:

» Stick to the earlier, simpler approach if there is no state.
» Sub-VIs using feedback loop don’t need interpreter, since
state isn’t updated until sub-VI is exited.

