
Formal Verification of
LabVIEW Programs

with ACL2:
Progress Report on Handling State

Matt Kaufmann

April, 2008

1

OUTLINE

◮ Background
◮ The problem of state
◮ Hierarchy (work in progress)

2

OUTLINE

◮ Background
◮ Brief history
◮ ACL2 representation
◮ Main verification idea

◮ The problem of state
◮ Hierarchy (work in progress)

3

BRIEF HISTORY
◮ Jeff Kodosky started playing around in 2004 with the idea

of verifying a LabVIEW program.
◮ Warren Hunt and J Moore met on occasion with Jeff and

Jacob Kornerup over several years, culminating with NI
engaging Grant Passmore as an intern in 2005.

◮ Grant developed an approach to prove Gauss’s theorem
that the sum of the integers from 1 to n is n*(n+1)/2.

◮ Summer 2007: Matt Kaufmann developed an alternate
approach to model LabVIEW programs, including loop
structures, directly as ACL2 functions. Grant updated the
infrastructure accordingly.

◮ Fall 2007: Grant transferred infrastructure support to Mark
Reitblatt, NI intern from UT CS. Mark has worked with Matt
on further automating the loop verification.

◮ Since then: Matt has been working on extending the
previous work to handle LabVIEW diagrams with state.
Also, Mark has looked into applying model checking.

4

ACL2 REPRESENTATION, p. 1

◮ Every module, primitive or not, takes and returns a single
alist that we call a record, by calling S*, “set”.

◮ Every wire returns a LabVIEW data value, obtained by
applying G, “get”, to a record.

|----------------------------------- n
| |
| |---N0 |----N1 |

x --|-- X0 --| | | | |
| | + |-- W0 --| 1+ |-- Z0 --|-- z

y --|-- Y0 --| | | | |
| |---| |----| |
|-----------------------------------|

5

ACL2 REPRESENTATION, p. 2

|----------------------------------- n
| |
| |---N0 |----N1 |

x --|-- X0 --| | | | |
| | + |-- W0 --| 1+ |-- Z0 --|-- z

y --|-- Y0 --| | | | |
| |---| |----| |
|-----------------------------------|

(DEFUN X0 (IN) (G :X IN))
(DEFUN Y0 (IN) (G :Y IN))
(DEFUN N0 (IN) (S* :T0 (+ (X0 IN) (Y0 IN))))
(DEFUN W0 (IN) (G :T0 (N0 IN)))
(DEFUN N1 (IN) (S* :T0 (1+ (W0 IN))))
(DEFUN Z0 (IN) (G :T0 (N1 IN)))

6

MAIN VERIFICATION IDEA

◮ An assertion is simply a Boolean-valued wire that can be
checked at runtime.

◮ Goal: prove that each assertion is true

◮ Earlier focus: For-loops and while-loops

7

OUTLINE

◮ Background
◮ The problem of state :

◮ Producer-consumer scenario
◮ Valid traces
◮ A simple producer-consumer example using global

variables
◮ A simple producer-consumer example using a feedback

loop
◮ Atomic read-modify-write using sub-VIs

◮ Hierarchy (work in progress)

8

Producer-consumer scenario (p. 1)

9

Producer-consumer scenario (p. 2)

N1: Wr B, 1 N5: Wr A, 2
N2: Rd B N6: Wr B, 2
N3: Wr A, 1
N4: Rd A

We want to prove the following.

◮ N4 reads 1 or 2 for A.
◮ If N2 reads 2 for B, then N4 reads 1 for A.

10

Valid traces (p. 1)
For “If N2 reads 2 for B, then N4 reads 1 for A”: This theorem
will be stated as a property of all valid computation traces —
node sequences.

N1: Wr B, 1 N5: Wr A, 2
^ ^

N2: Rd B >? N6: Wr B, 2
^

N3: Wr A, 1
^

N4: Rd A

11

Valid traces (p. 1)
For “If N2 reads 2 for B, then N4 reads 1 for A”: This theorem
will be stated as a property of all valid computation traces —
node sequences.

N1: Wr B, 1 N5: Wr A, 2
^ ^

N2: Rd B >? N6: Wr B, 2
^

N3: Wr A, 1
^

N4: Rd A

We specify node pairs (N . N’) such that N must fire before N’:

(valid-tracep-setup st1
((n1 . n2)
(n2 . n3)
(n3 . n4)
(n5 . n6)))

12

Valid traces (p. 2)
Generated by above valid-tracep-setup call:

(DEFUN ST1$VALID-TRACEP (LST)
(AND (NO-DUPLICATESP-EQUAL LST)

(PREC-LST (ST1$PREC-REL) LST)))

Examples:

ACL2 !>(st1$valid-tracep (reverse ’(n1 n2 n3 n4 n5 n6)))
T
ACL2 !>(st1$valid-tracep (reverse ’(n1 n5 n2 n3 n6 n4)))
T
ACL2 !>(st1$valid-tracep (reverse ’(n1 n5 n2)))
T
ACL2 !>(st1$valid-tracep (reverse ’(n4 n5 n6)))
NIL
ACL2 !>(st1$valid-tracep (reverse ’(n2 n1)))
NIL
ACL2 !>

13

Valid traces (p. 3)

Consider:

:trans1 (valid-tracep-setup st1
((n1 . n2)
(n2 . n3)
(n3 . n4)
(n5 . n6)))

Here we edit away some output. Note that some hints use
functional instantiation.

14

Valid traces (p. 4)
(PROGN (DEFUN ST1$PREC-REL ()

’((N1 . N2)
(N2 . N3)
(N3 . N4)
(N5 . N6)))

(DEFUN ST1$VALID-TRACEP (LST)
(AND (NO-DUPLICATESP-EQUAL LST)

(PREC-LST (ST1$PREC-REL) LST)))
(DEFTHM ST1$VALID-TRACEP-FORWARD-TO-NO-DUPLICATESP-EQUAL

(IMPLIES (ST1$VALID-TRACEP TRACE)
(NO-DUPLICATESP-EQUAL TRACE))

:RULE-CLASSES :FORWARD-CHAINING)
(DEFTHM ST1$VALID-TRACEP-FORWARD-TO-PREC-N1-N2

(IMPLIES (AND (ST1$VALID-TRACEP TRACE)
(MEMBER-EQUAL ’N2 TRACE))

(MEMBER-EQUAL ’N1
(MEMBER-EQUAL ’N2 TRACE)))

:RULE-CLASSES :FORWARD-CHAINING)
... ; similarly for N2-N3, N3-N4, N5-N6
(DEFTHM ST1$VALID-TRACEP-FORWARD-TO-PREC-N1-N2$2

(IMPLIES (AND (ST1$VALID-TRACEP TRACE)
(EQUAL ’N2 (CAR TRACE)))

(MEMBER-EQUAL ’N1 (CDR TRACE)))
:RULE-CLASSES :FORWARD-CHAINING)

... ; similarly for N2-N3$2, N3-N4$2, N5-N6$2
(IN-THEORY (DISABLE ST1$VALID-TRACEP))
(DEFTHM ST1$VALID-TRACEP-CDR

(IMPLIES (ST1$VALID-TRACEP TRACE)
(ST1$VALID-TRACEP (CDR TRACE))))

(DEFTHM ST1$VALID-TRACEP-MEMBER-EQUAL
(IMPLIES (ST1$VALID-TRACEP TRACE)

(ST1$VALID-TRACEP (MEMBER-EQUAL NODE TRACE))))
(DEFCONST *ST1$NODES* ’(N1 N5 N6 N2 N3 N4)))

15

OUTLINE

◮ Background
◮ The problem of state :

◮ Producer-consumer scenario
◮ Valid traces
◮ Producer-consumer with global variables
◮ Producer-consumer with a feedback loop
◮ Atomic read-modify-write using sub-VIs

◮ Hierarchy (work in progress)

16

DISCLAIMER

◮ We’re skipping most technical detail (time limitations).
◮ See .lisp files (certified books) for details, including

some interesting technical challenges. I’m happy to serve
as tour guide.

17

Producer-consumer with global variables (p. 1)

We return to the example already presented:

N1: Wr B, 1 N5: Wr A, 2
N2: Rd B N6: Wr B, 2
N3: Wr A, 1
N4: Rd A

We want to prove the following.

◮ N4 reads 1 or 2 for A.
◮ If N2 reads 2 for B, then N4 reads 1 for A.

The next slides illustrate our translation.

18

Producer-consumer with global variables (p. 2)
Basic node and wire functions are based on the state at the
time the node or wire gets its value, e.g.:

; Node N3 does a write, so returns nothing:
(defun n3@ (in st)
nil)

; Node N4 returns a record with the value of A.
(defun n4@ (in st)
(s* :t0 (g :a st)))

; This wire (for terminal T0 of N4) is the value
; that has been read for A.
(defun n4-t0@ (in st)
(g :t0 (n4@ in st)))

19

Producer-consumer with global variables (p. 3)

Next, we say how state is updated.

(defun st1$state-step (node in st)
(case node

(n1 (s :b 1 st)) ; Wr B, 1
(n3 (s :a 1 st)) ; Wr A, 1
(n5 (s :a 2 st)) ; Wr A, 2
(n6 (s :b 2 st)) ; Wr B, 2
(otherwise st)))

(defun st1$state-rec (in st trace)
(if (consp trace)

(st1$state-step (car trace)
in
(st1$state-rec in st (cdr trace)))

st))

(defun st1$state (node in st trace)
(st1$state-rec in st (cdr (member-equal node trace))))

20

Producer-consumer with global variables (p. 4)

Then, we define the actual node and wire functions in terms of
the state as of the time the diagram is first entered, e.g.:

; Node N3 does a write, so returns nothing:
(defun n3 (in st trace)
(n3@ in (st1$state ’n3 in st trace)))

; Node N4 returns a record with the value it reads.
(defun n4 (in st trace)
(n4@ in (st1$state ’n4 in st trace)))

; This wire (for terminal T0 of N4) is the value
; that has been read.
(defun n4-t0 (in st trace)
(n4-t0@ in (st1$state ’n4 in st trace)))

21

Producer-consumer with global variables (p. 5)

Example that evaluates to T:

(let ((trace (reverse ’(n1 n2 n3 n4 n5 n6))))
(and (st1$valid-tracep trace)

(equal (n4 nil ’((:a . 0) (:b . 0)) trace)
’((:T0 . 1)))))

N1: Wr B, 1
N2: Rd B
N3: Wr A, 1
N4: Rd A
N5: Wr A, 2
N6: Wr B, 2

22

Producer-consumer with global variables (p. 6)
First Theorem: N4 reads 1 or 2. The following invariant could
be automatically generated. Proof using functional instantiation
replaces explicit induction by a base and an induction step.

(defun st1$state-inv1 (in st trace)
(implies (member-equal ’n3 trace)

(member-equal (g :a (st1$state-rec
in st trace))

’(1 2))))

The key observation is that N4 is after N3:

N3: Wr A, 1
N4: Rd A

The invariant then yields the theorem:

(implies (and (st1$valid-tracep trace)
(subsetp-equal *st1$nodes* trace))

(member-equal (n4-t0 in st trace) ’(1 2)))

23

Producer-consumer with global variables (p. 7)

Second Theorem: If N2 reads 2 for B, then N4 reads 1 for A.

(implies (and (st1$valid-tracep trace)
(subsetp-equal *st1$nodes* trace)
(equal (n2-t0 in st trace) 2))

(equal (n4-t0 in st trace)
1))

24

Producer-consumer with global variables (p. 8)

N1: Wr B, 1 N5: Wr A, 2
N2: Rd B [2] N6: Wr B, 2
N3: Wr A, 1
N4: Rd A [1?]

Our reasoning goes as follows.

N6 << N2 {by invariant:}
If N1 << N and not N6 << N, then value of B is 1

N4 reads 1 for A {by invariant:}
If N5 << N3 << N, the value of A at N is 1

The user is expected to create the two invariants, but our .lisp
file suggests that the system could then prove them
automatically.

25

Producer-consumer with global variables (p. 9)

The above example is file state-1.lisp. We have created
two elaborations:

◮ state-2.lisp
Re-working of state-1.lisp, reading directly from
inputs instead of using constants.

◮ state-3.lisp
Re-working of state-2.lisp, but using proper wires for
inputs and thus using mutual-recursion for wire, node, and
state functions.

26

OUTLINE

◮ Background
◮ The problem of state :

◮ Producer-consumer scenario
◮ Valid traces
◮ Producer-consumer with global variables
◮ Producer-consumer with a feedback loop
◮ Atomic read-modify-write using sub-VIs

◮ Hierarchy (work in progress)

27

Producer-consumer with a feedback loop (p. 1)

The key element for this version of the problem is a latch VI,
which is non-reentrant : only one instance is being evaluated at
a time.

File state-4.lisp includes this “wonderful” graphic:

; -----
; -- wrp -- | |
; -- din -- | ITE | -- out --
; st -- | | V
; / ^ ----- |
; 0 | |
; ----------------

The main VI instantiates two different (but isomorphic) such
latches, A and B, each three times (two writes and one read,
each):

28

Producer-consumer with a feedback loop (p. 2)

29

Producer-consumer with a feedback loop (p. 3)

This example is similar to the earlier one, though more complex.
We see a first attempt to handle hierarchical state elements.

(defun st1$state-step (node in new-st st trace)
(declare (xargs :measure (st1$measure node trace :state-step)))
(if (and (st1$valid-tracep trace)

(member-equal node trace))
(case node

(n1 (s :latch-b ; WR B, b1
(latch-b{post-state} (s* :wrp (n1-wrp-t0 in st trace)

:din (in-b1 in st trace))
(g :latch-b new-st))

new-st))
(n2 (s :latch-b ; Rd B

(latch-b{post-state} (s* :wrp (n2-wrp-t0 in st trace)
:din 0)

(g :latch-b new-st))
new-st))

....
(otherwise new-st))

new-st))

30

Producer-consumer with a feedback loop (p. 4)
The proofs of the two theorems are similar to the earlier ones.
But there are no “@” functions – state as of entry to a node
doesn’t tell you the state at input wires. (Initially I got this
wrong!)
However, we first need to prove invariants about the bits of
state indicating whether the feedback element has ever been
entered, e.g. for Latch A:

(implies
(st1$valid-tracep trace)
(let ((n3p (member-equal ’n3 trace))

(n5p (member-equal ’n5 trace)))
(equal (g :st{first}

(g :latch-a
(st1$state-rec in st trace)))

(if (or n3p n5p)
nil

(g :st{first} (g :latch-a st))))))

31

OUTLINE

◮ Background
◮ The problem of state :

◮ Producer-consumer scenario
◮ Valid traces
◮ Producer-consumer with global variables
◮ Producer-consumer with a feedback loop
◮ Atomic read-modify-write using sub-VIs

◮ Hierarchy (work in progress)

32

Atomic read-modify-write using sub-VIs (p. 1)
Sub-VI Inc, state-5.lisp (to be fixed like state-4.lisp):

; ----
; en -- | |
; st0 -- | 1+ | -- out --
; /^ | | V
; / | ---- |
; 0 | |
; ----------------

Main VI from state-5.lisp: two writes, then a read.

; N1: Inc[En=T] N2: Inc[En=T]
; ----------------------------------
; N3: Inc[En=NIL]

Theorem proved:

(implies (and (vi0$valid-tracep trace)
(g :st0{first} (g :inc st))
(subsetp-equal *vi0$nodes* trace))

(equal (n3-out in st trace) 2))

33

OUTLINE

◮ Background
◮ The problem of state:

◮ Producer-consumer scenario
◮ Valid traces
◮ Producer-consumer with global variables
◮ Producer-consumer with a feedback loop
◮ Atomic read-modify-write using sub-VIs

◮ Hierarchy (work in progress)

34

Hierarchy (work in progress)

We do not yet handle loops with state. Work in progress:

◮ A rather detailed 6-page plan that could deal nicely with
loops and other hierarchy

◮ Main idea: notion of node is extended to hierarchical node:
in essence, a path of enclosing node instances down
towards a leaf node.

◮ A trace is then a list of hierarchical nodes. A valid trace
must respect loop indices, in particular.

35

Conclusion (p. 1)

There’s a good start on handling state:

◮ Trace model, with helpful (and proved) supporting rules
◮ Examples have been worked
◮ Hierarchy has been considered

The next step is to implement the hierarchical approach to work
the motivating example from Jacob Kornerup:

There are two loops with 100 iterations each, one
incrementing and the other decrementing a global
integer at each iteration. The increment/decrement
operations are atomic. Prove that the final value of the
global equals its initial value.

36

Conclusion (p. 2)

Guiding principles to balance are the following.

◮ Work simple examples to develop methodologies.
◮ But keep in mind future automation and scalability.
◮ And use a suitable translation:

◮ Stick to the earlier, simpler approach if there is no state.
◮ Sub-VIs using feedback loop don’t need interpreter, since

state isn’t updated until sub-VI is exited.

37

