
Unique ACL2 Object Representation

Robert S. Boyer and Warren A. Hunt, Jr.

February 25, 2009

Computer Sciences Department
University of Texas

1 University Way, M/S C0500
Austin, TX 78712-0233

E-mail:
{boyer,hunt}@cs.utexas.edu

TEL: +1 512 471 9748
FAX: +1 512 471 8885

Centaur Technology, Inc.
7600-C N. Capital of Texas Hwy

Suite 300
Austin, Texas 78731

E-mail:
{boyer,hunt}@centtech.com

TEL: +1 512 418 5797
FAX: +1 512 794 0717

Page 1 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 1 / 20



Unique ACL2 Object Representation

The introduction of unique object representation to the ACL2 system
allows ACL2 users to sometimes write much more efficient algorithms.

The logical story

No changes to the ACL2 logic.
HONS defined to be CONS.
Association lists provided with contant-time lookup.
Function memoization mechanism provided.

The implementation story

Internal data structures are used to identify unique CONS pairs.
Hash tables are used to support fast association list access.
Memoized function results are stored in hash tables.
Real-time performance monitoring provided with function memoization.

To use HONS effectively, the HONS frontier must be understood.

Page 2 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 2 / 20



Presentation Outline

1 Introduction

1 Definition of HONS and HONS-EQUAL

1 The HONS Frontier

1 Fast Association Lists

1 Function Memoization

1 Real-Time Performance Measurement

Page 3 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 3 / 20



Definition of HONS and HONS-EQUAL

HONS and HONS-EQUAL are introduced as normal ACL2 functions.

(defmacro defn (f a &rest r)
‘(defun ,f ,a (declare (xargs :guard t)) ,@r))

(defn hons (x y) (cons x y))

(defn hons-equal (x y) (equal x y))

HONS
is exactly defined to be CONS, and
runs approximately 20 times slower (with CCL) than CONS.

HONS-EQUAL
is exactly defined to be EQUAL, and
performs short-circuit equality checks.

Page 4 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 4 / 20



The HONS Frontier

Although, nowhere made available, one must always keep the HONS
frontier in mind; all objects within the frontier have a unique internal
representation.

We recognize a unique object with the internal HONSP predicate.

All constants

CONS objects created with HONS

Page 5 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 5 / 20



How Do We Maintain the HONS Frontier?

When the (HONS x y) is evaluated, a two-level lookup is performed.

(HONS  X  Y)

Hashtable

NIL

Y

NIL X1

X2

Y

X
i

X3

X4

CDR

Hashtable

NIL

NIL

NIL

Page 6 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 6 / 20



HONS-COPY

HONS-COPY duplicates objects as necessary to extend the HONS frontier.

(defn hons-copy (x) x) ;; Has internal implementation

For example, if HONS-COPY is called with a reference to the left-most
pointer to the upper-left CONS node, then the graph is transformed.

Page 7 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 7 / 20



Fast Association Lists

Using unique ACL2 objects as association-list keys, we have developed a
faster lookup mechanism that obeys this semantics.

(defn hons-assoc-equal (x y)
(cond ((atom y) nil)

((and (consp (car y))
(hons-equal x (car (car y))))

(car y))
(t (hons-assoc-equal x (cdr y)))))

(defn hons-get-fn-do-hopy (x l)
;; Has an "under-the-hood" implementation.
(hons-assoc-equal x l))

(defmacro hons-get (x l)
(list ’hons-get-fn-do-hopy x l))

Page 8 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 8 / 20



Constructing Fast Association Lists

We define two ACL2 functions to aid with the construction of fast
association lists.

(defn hons-acons (key value l)
(cons (cons (hons-copy key) value) l))

(defn hons-acons! (key value l)
(hons (hons (hons-copy key) value) l))

Notice that HONS-ACONS! creates an association list which is itself is a
unique object.

Such an association list may assist function memoization; however

Such an association list may be stolen – more later.

Page 9 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 9 / 20



Fast Association Lists – HONS-ACONS

When using HONS-ACONS, the HONS frontier is only with the association
list keys – the spine is composed of CONS objects.

Val3

Atom
ACL2

Key1

Key2

Key3

Val1

Val2

Page 10 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 10 / 20



Fast Association Lists – HONS-ACONS!

When using HONS-ACONS!, everything is within the HONS frontier.

Val3

Atom
ACL2

Key1

Key2

Key3

Val1

Val2

Page 11 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 11 / 20



How is the Association-List Hashtable Found?

When HONS-GET is called, we use the top-most CONS as a key into a table
of fast association lists; however, it might be stolen!

1

Table of ALists

to Hashtables

Hashtables

for ALists

X
4

NIL

2

Y
1

Y
3

Y

X

4

X
2

Y

X
3

NIL

Page 12 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 12 / 20



Function Memoization

For functions that are repeatably called on highly structure-shared data
objects (e.g., BDDs), function memoization can reduce evaluation costs.

Common-Lisp compliant functions may be memoized.

An associated hash table is created when the function is memoized.

Computing the value of a function requires several steps.

A condition is computed to see if memoization should be attempted.

When a memoized function is called, its args are combined into a key.

Using this key, a lookup is done in the memoization hash table.

If the lookup is successful, the corresponding previously computed
value is returned.

Otherwise, the original function is called, and its result is computed.

This newly computed value is then installed in this function
memoization table with the key just computed.

Finally, the answer is returned.

Page 13 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 13 / 20



Single Argument Function Memoization

Functions with a single argument are memoized with a single hashtable.

(defun fib (x)
(declare (xargs :guard (natp x)))
(mbe
:logic
(if (zp x)

0
(if (= x 1)

1
(+ (fib (- x 2)) (fib (- x 1)))))

:exec
(if (< x 2)

x
(+ (fib (- x 2)) (fib (- x 1))))))

(memoize ’fib :condition ’(< 40 x)) ;; *** D E M O ***

Page 14 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 14 / 20



Multi-Argument Function Memoization

Memoizing (F x y z) requires two PONS objects — a function-specific
collection of HONS-like objects with supporting hashtables.

X

1

1 Z1Y

2

2 Z2Y2

Ans

Ans

1 X

Page 15 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 15 / 20



A BDD Implementation

Unique objection and function memoization allow a very small, but
competitive BDD package to be created.

(defabbrev qcar (x) (if (consp x) (car x) x))
(defabbrev qcdr (x) (if (consp x) (cdr x) x))

(defabbrev qcons (x y)
(if (or (and (eq x t) (eq y t))

(and (eq x nil) (eq y nil)))
x

(hons x y)))

(defn q-not (x)
(if (atom x)

(if x nil t)
(hons (q-not (car x))

(q-not (cdr x)))))

Page 16 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 16 / 20



A BDD Implementation

This Q-ITE function includes optimizations necessary to keep BDD objects
normalized. This implementation is in everyday, industrial use.

(defn q-ite (x y z)
(cond
((null x) z)
((atom x) y)
(t (let ((y (if (hqual x y) t y)) ; Simp Left branch

(z (if (hqual x z) nil z))) ; Simp Right branch
(cond
((hqual y z) y) ; (if x y y) => y
((and (eq y t) (eq z nil)) x) ; (if x T NIL) => x
((and (eq y nil) (eq z t)) (q-not x)) ; For speed
(t (let ((a (q-ite (car x) (qcar y) (qcar z)))

(d (q-ite (cdr x) (qcdr y) (qcdr z))))
(qcons a d))))))))

Page 17 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 17 / 20



Real-Time Performance Measurement

In real time, we track the number of CONS objects identified as HONS
objects – this information can be used as a real-time performance monitor.

After loading examples.lsp, this HONS information is externally available.

? (hsum)
(defun hons-summary
Hons hits/calls 2.8E+5 / 4.7E+5 = 0.58
*HONS-CDR-HT* count/size 1.46E+5 / 2.01E+5 = 0.73
*HONS-CDR-HT-EQL* count/size 3.9E+3 / 5.2E+3 = 0.74
*NIL-HT* count/size 2.6E+4 / 2.6E+4 = 0.99
*HONS-STR-HT* count/size 5.3E+3 / 7.8E+3 = 0.67
Number of sub tables 16
Sum of sub table sizes 9.2E+3
Number of honses 2.24E+5)
223556

Page 18 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 18 / 20



Example Summary of Q-NOT Measurements

(defun Q-NOT hits/calls 3.4E+4 / 5.4E+4 = 0.63
Time of all outermost calls 0.42
Time per call 7.7E-6
Heap bytes allocated 3.2E+6
Heap bytes allocated per call 59.61
Hons calls 2.1E+4
Time per missed call 2.07E-5
From Q-NOT 4.1E+4 calls
From T-FIX 9.9E+3 calls took 0.25
From outside 1.69E+3 calls took 0.15
From F-NOT 942 calls took 7.7E-3
From Q-BINARY-XOR 488 calls took 4.9E-3
From Q-BINARY-IFF 94 calls took 1.51E-4
From Q-ITE-FN 18 calls took 1.63E-4
From NQV 6 calls took 4.0E-4
Memoize table count/size 2.0E+4 / 2.6E+4 = 0.76)

Page 19 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 19 / 20



Library Support of HONS Extensions

Presently, in books/misc the files qi.lisp and qi-correct.lisp provide
additional HONS-based functionality.

qi.lisp – definitions of BDD package

qi-correct.lisp – verification of BDD functions

Jared Davis and Sol Swords have written a new book that extends the
books mentioned above.

Library can rewrite all BDD functions to Q-ITE functions

Library provides other rewriting strategies.

Provides “pick-a-point” proof support for BDD-related proofs.

Page 20 (Warren A. Hunt, Jr. UT, Centaur) Unique ACL2 Object Representation February 25, 2009 20 / 20


	Introduction
	Definition of HONS and HONS-EQUAL
	The HONS Frontier
	Fast Association Lists
	Function Memoization
	Real-Time Performance Measurement

