The GL Clause Processor

Sol Swords

September 23, 2009

Sol Swords () The GL Clause Processor September 23, 2009 WAL



Outline

About GL

About clause processors

The GL clause processor

Verifying the Clause Processor

Clause Processor Verification Tidbits

Conclusion

Sol Swords () The GL Clause Processor September 23, 2009 2/19



About GL

What is GL?

GL is a framework for proving difficult theorems by symbolic simulation using
BDD-based Boolean reasoning.
High-level Specification

(let* ((s@ (xor (bif @ a) (bit @ b))
(co (and (bit 0 a) (bit @ b))
(x1 (xor (biN1 a) (bit 1 b)))
(s1 (xor co
(j1 (and (bi{ 1 a)
(cl (or j1 (ant—e&

Se)
(list s0 s1 s2 ... s10))

Low-level Implementation

Sol Swords () The GL Clause Processor September 23, 2009 3/19



About GL

What is GL?

GL is a framework for proving difficult theorems by symbolic simulation using
BDD-based Boolean reasoning.

High-level Specification
AlAIAIAIATAIAIATALA (symbolic simulator)
[BB[B,[B4[B; [B[B;[B,[B[B ] +m

€.

Low-level Implementation [D:A +iymB j:]j
(symbolic simulator) =
[(TTAG,.B [1T1T]

Sol Swords () The GL Clause Processor September 23, 2009 3/19



About GL

Seen last time: Code transform

» Code transform creates symbolic counterparts for ACL2 functions

» Symbolic counterparts proven to correctly simulate their original functions

F
Concrete Inputs —— Concrete Result

Fsym .
Symbolic Inputs ——— Symbolic Result

» Problem: Many proofs necessary, many new functions introduced, lots of
theorem proving time, unreliable automation for proofs.

Sol Swords () The GL Clause Processor September 23,2000 4 / 19



About GL

The new way: Verified interpreter

> Interpreter carries out symbolic execution

> Inputs (abstractly): term, symbolic bindings, set of definitions
> Uses existing symbolic counterparts of some “primitives”
» Can concretely execute a fixed set of functions

Term
(EQUAL (4 A B)

©AB) \
Bindings
((A . CIII11)

(8 . [OIITTTI))

Definitions

(EQUAL (F0O0 X)
(LET ((Y ...))
(TR

Symbolic
Interpreter

(@)
Primitive Concretely
Symbolic Executable
Counterparts Functions

Symbolic
Result

*

Sol Swords ()

The GL Clause Processor

September 23, 2009

5/ 19



About GL

Verified Interpreter

> Interpreter and primitive symbolic counterparts are verified; no need to
generate and verify other symbolic counterparts.

» Contrast with the “verifying compiler” approach.

> Performance: Sometimes slow to interpret through recursive definitions.
Solution: each interpreter has

> a fixed set of functions which it can directly execute on concrete values
> a fixed set of symbolic counterparts which it can directly execute.

May define new interpreters with different such sets of functions.

> Interpreter may be used in a clause processor to prove theorems.

Sol Swords () The GL Clause Processor September 23,2000 6 / 19



About clause processors

What is a clause processor?

From ACL2 documentation: “A simplifier at the level of goals, where a goal is
represented as a clause.”
» User-defined function that takes one goal clause and produces a list of new
clauses.
> Soundness contract: proving all of the new clauses suffices to prove the goal.

> May be verified (requires meta-level proof) or not (requires trust tag.)

Clause

(implies Clause Derived
(foo a b)
(bar a b c)) Processor Clauses

Sol Swords () The GL Clause Processor September 23,2000 7 / 19



About clause processors

Clause Processor Verification

Prove correctness with respect to an evaluator function
eval(Term, Alist) — Object which gives a semantics to quoted terms. Example:

(eval ’(if a (comns a ’b) ’foo) ’((a . bar)))
= (bar . b)

Clause processor correctness statement:

(implies (and ... ;5 well-formedness hyps
(eval (conjoin-clauses
(clause-proc goal hints ...))
my-alist))
(eval (disjoin goal) alist))

Sol Swords () The GL Clause Processor September 23,2000 8 / 19



The GL clause processor

GL Clause Processor Flow

Bindings
A < symbolic 9-bit integer . L
B — symbolic 6-bit integer Restricted Bindings
R Symbolic . A = sym. 8-bit even natural
Hypothesis Interpreter (LA B < sym. 6-bit odd integer
A is an 8-bit even natural a
B is a 6-bit odd integer
Symbolic
Conclusion Predicate Iy
A[0] = A[8] = 0
\ B[O] =1
Clause * s
If Ais an 8-bit even \ RESUlt I
natural and B is a W
6-bit odd integer, then
spec(A, B) = impl(A, B) +
/ Coverage Relevance
Side . l-lié/ptf:th?sisb) Proving
ag s olds for (a, (Hyp => Concl)
Conditions => suf)flie:es to prove
Bindings Clause
\ cover (a, b)
Sol Swords ()

The GL Clause Processor

September 23, 2009

9/19



The GL clause processor

GL Clause Processor: Inputs

Hints
Bindings » Clause: the goal to be proved
A = bolic 9-bit int¢ . . . . .
B < aymbolic 6.bit nteger » Hypothesis, conclusion, bindings: hints to
Hypothesis the clause processor
A 8-bit tural . . . . .
B is 2 6-bitodd nteger » Bindings associate a symbolic object to
. each free variable in the clause
Conclusion
» Hypothesis gives “type” /"shape”
\ ) constraints on variables
Clause » Conclusion may further restrict variables
Py (may itself be an IMPLIES term).
6-bit odd integer, then
spec(A, B) = impl(A, B)

Sol Swords () The GL Clause Processor September 23, 2009 10 / 19



The GL clause processor

GL Clause Processor: Side Conditions

Hints
Bindings » Coverage:
e ey ieial » Symbolic simulation (if successful) proves:
Hypothesis The co.nc/usion holds of input 'vecl:tor x if x is
A is an 8-bit even natural a possible value of the symbolic inputs used
B is a 6-bit odd integer . . .
in the simulation.
Conclusion » To relate this to the hypothesis, must show:
If input vector x satisfies the hypothesis, then
~ it is a possible value of the symbolic inputs.
Clause

If Ais an 8-bit even
natural and B is a
6-bit odd integer, then
spec(A, B) = impl(A, B)

Coverage Relevance
Side Hypothesis Proving
oyt holds for (a, b) (Hyp => Concl)
Conditions => suffices to prove
Bindings Clause
cover (a, b)

Sol Swords () The GL Clause Processor September 23, 2009 11 / 19



The GL clause processor

GL Clause Processor: Side Conditions

Hints

Bindings » Relevance:
A < symbolic 9-bit integer . .
B = symbollc 6-bit Integer » Clause, hypothesis, conclusion are
Hypothesis mdepen.den.t mpu.ts to the clause processor
A is an 8-bit even natural » Symbolic simulation (with coverage)
B is a 6-bit odd integer

effectively proves

Conclusion
spe B) . .
hypothesis = conclusion
. J
. C
Clause Therefc?re, prove that this implies the clause
If Alis an 8-bit even and we're done.

natural and B is a
6-bit odd integer, then »>

S Ry (e Typically trivial by construction.

Coverage Relevance
Side Hypothesis Proving
oyt holds for (a, b) (Hyp => Concl)
Conditions => suffices to prove
Bindings Clause
cover (a, b)

Sol Swords () The GL Clause Processor September 23, 2009 11 / 19



The GL clause processor

GL Clause Processor: Parametrization

Hints

Bindings
A < symbolic 9-bit integer
B <= symbolic 6-bit integer

Hypothesis
A is an 8-bit even natural
B is a 6-bit odd integer

Conclusion
spec(A, B)

imy B)

-~
Clause

If Ais an 8-bit even
natural and B is a
6-bit odd integer, then
spec(A, B) = impl(A, B)

Sol Swords ()

» Symbolic bindings may cover more than is
accepted by the hypothesis - often better
symbolic simulation performance is achievable
if inputs cover less

» Symbolically simulating the hypothesis on the
inputs yields a symbolic predicate

» Parametrization by that predicate yields new

symbolic objects with coverage restricted to
the space recognized by the hypothesis.

Restricted Bindings
A = sym. 8-bit even natural
B == sym. 6-bit odd integer

ln{erpreter

(Parametrize)—»

Predicate

A[0] = A[8]
B[O]

The GL Clause Processor September 23, 2009 12 /19



The GL clause processor

GL Clause Processor: Simulation

» Symbolically execute the conclusion to Restricted Bindings
determine whether it holds on the
space represented by the restricted

bindings Conclusion
)

Symbolic
Interpreter

» Result: often T or a set of
counterexamples

Result 4

» May fail or produce an ambiguous
result (stack depth overrun,
unimplemented primitive)

Sol Swords () The GL Clause Processor September 23, 2009 13 / 19



The GL clause processor

GL Clause Processor Flow: Recap

Bindings
A < symbolic 9-bit integer . L
B — symbolic 6-bit integer Restricted Bindings
R Symbolic . A = sym. 8-bit even natural
Hypothesis Interpreter (LA B < sym. 6-bit odd integer
A is an 8-bit even natural a
B is a 6-bit odd integer
Symbolic
Conclusion Predicate Iy
A[0] = A[8] = 0
\ B[O] =1
Clause * s
If Ais an 8-bit even \ RESUlt I
natural and B is a W
6-bit odd integer, then
spec(A, B) = impl(A, B) +
/ Coverage Relevance
Side . l-lié/ptf:th?sisb) Proving
ag s olds for (a, (Hyp => Concl)
Conditions => suf)flie:es to prove
Bindings Clause
\ cover (a, b)
Sol Swords ()

The GL Clause Processor

September 23, 2009 14 /19



Verifying the Clause Processor

Verifying GL Clause Processors

» First, verify the generic clause processor:
» Crux: symbolic interpreter is faithful to an evaluator's interpretation of a given
term (next slide)
» Show that given the side conditions, if the interpreter’'s result is always true,
then the clause is a theorem
» Automate the correctness proof of new clause processors by functional
instantiation of the generic one
» DEF-GL-CLAUSE-PROCESSOR macro provided; introduces and verifies a new GL
clause processor.

Sol Swords () The GL Clause Processor September 23, 2009 15 /19



Verifying the Clause Processor

Correctness of Interpreter

vV V.V v v Yy

>

term: what we're symbolically simulating

bindings: association of symbolic objects to free variables of term
defs: function definitional equations given to interpreter

env: environment for symbolic object evaluation

EVAL(term, alist) — obj: Evaluator for quoted ACL2 terms
GL-EV(sym-obj, env) — obj: Evaluator for symbolic objects.
INTERP(term, bindings, defs) — sym-obj: Symbolic interpreter.

(Abstract) correctness statement:

Yterm, bindings, defs, env .

(Valist . EVAL(conjoin(defs), alist))
= GL-EV(INTERP(term, bindings, defs), env)
= EVAL(term, GL-EV(bindings, env))

Sol Swords () The GL Clause Processor September 23, 2009 16 / 19



Verifying the Clause Processor

Correctness of Interpreter

»
>
>
>
>
>
>

term: what we're symbolically simulating

bindings: association of symbolic objects to free variables of term
defs: function definitional equations given to interpreter

env: environment for symbolic object evaluation

EVAL(term, alist) — obj: Evaluator for quoted ACL2 terms
GL-EV(sym-obj, env) — obj: Evaluator for symbolic objects.
INTERP(term, bindings, defs) — sym-obj: Symbolic interpreter.

EVAL(term,...)

Concrete Alist Concrete Result

GL-EV GL-EV

INTERP(term,..

Symbolic Bindings ——— S)ymbolic Result

Sol Swords () The GL Clause Processor September 23, 2009 16 / 19



Clause Processor Verification Tidbits

Assumed Definitions

>

Definitions used by interpreter are not considered axiomatically true

v

But we assume they are for the interpreter correctness statement
Therefore, we are forced to emit them as output clauses from the clause
processor.

> To automate their proofs, “label” each definition clause by adding a trivially
true hypothesis and use computed hints to eliminate them

> See “clause-processors/use-by-hint.lisp” .

v

((not (use-these-hints
’((:by (:definition len)))))
(equal (len x)
(if (comsp x)
(+ 1 (len (cdr x)))
0)))

Sol Swords () The GL Clause Processor September 23, 2009 17 /19



Clause Processor Verification Tidbits

Instantiating derived clauses

(implies (eval (conjoin-clauses (clause-proc clause hints))
some-alist)
(eval (disjoin clause) original-alist))

» Problem: Certain derived clauses need to be instantiated with different alists
or multiple times in the clause processor correctness proof

» Solution: May choose for some-alist any alist you want. Use a Skolem
function:

(defchoose falsifier (a) (x)
(not (eval x a)))

and choose:
(falsifier (conjoin-clauses (clause-proc clause hints))).
» If c is a clause in the list (clause-proc clause hints), then

(eval (conjoin-clauses (clause-proc clause hints))
(falsifier (conjoin-clauses (clause-proc clause hints))))

implies for all a, (eval ¢ a).

Sol Swords () The GL Clause Processor September 23, 2009 18 / 19



Conclusion

Conclusions

> “Verified interpreter” rather than ‘“verifying compiler” seems to be a win
here.

» Eliminates a lot of theorem proving
> Little performance impact from interpretation (if you're careful)

> Challenging but surprisingly doable to verify complicated clause processors.
» Orchestration between clause processors and computed hints can be very
powerful.

Sol Swords () The GL Clause Processor September 23, 2009 19 / 19



	About GL
	About clause processors
	The GL clause processor
	Verifying the Clause Processor
	Clause Processor Verification Tidbits
	Conclusion

