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About GL

What is GL?

GL is a framework for proving difficult theorems by symbolic simulation using
BDD-based Boolean reasoning.
High-level Specification

(let* ((s@ (xor (bif @ a) (bit @ b))
(co (and (bit 0 a) (bit @ b))
(x1 (xor (biN1 a) (bit 1 b)))
(s1 (xor co
(j1 (and (bi{ 1 a)
(cl (or j1 (ant—e&

Se)
(list s0 s1 s2 ... s10))

Low-level Implementation
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GL is a framework for proving difficult theorems by symbolic simulation using
BDD-based Boolean reasoning.

High-level Specification
AlAIAIAIATAIAIATALA (symbolic simulator)
[BB[B,[B4[B; [B[B;[B,[B[B ] +m

€.

Low-level Implementation [D:A +iymB j:]j
(symbolic simulator) =
[(TTAG,.B [1T1T]
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About GL

Seen last time: Code transform

» Code transform creates symbolic counterparts for ACL2 functions

» Symbolic counterparts proven to correctly simulate their original functions

F
Concrete Inputs —— Concrete Result

Fsym .
Symbolic Inputs ——— Symbolic Result

» Problem: Many proofs necessary, many new functions introduced, lots of
theorem proving time, unreliable automation for proofs.
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About GL

The new way: Verified interpreter

> Interpreter carries out symbolic execution

> Inputs (abstractly): term, symbolic bindings, set of definitions
> Uses existing symbolic counterparts of some “primitives”
» Can concretely execute a fixed set of functions

Term
(EQUAL (4 A B)

©AB) \
Bindings
((A . CIII11)

(8 . [OIITTTI))

Definitions

(EQUAL (F0O0 X)
(LET ((Y ...))
(TR

Symbolic
Interpreter

(@)
Primitive Concretely
Symbolic Executable
Counterparts Functions

Symbolic
Result

*
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About GL

Verified Interpreter

> Interpreter and primitive symbolic counterparts are verified; no need to
generate and verify other symbolic counterparts.

» Contrast with the “verifying compiler” approach.

> Performance: Sometimes slow to interpret through recursive definitions.
Solution: each interpreter has

> a fixed set of functions which it can directly execute on concrete values
> a fixed set of symbolic counterparts which it can directly execute.

May define new interpreters with different such sets of functions.

> Interpreter may be used in a clause processor to prove theorems.
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About clause processors

What is a clause processor?

From ACL2 documentation: “A simplifier at the level of goals, where a goal is
represented as a clause.”
» User-defined function that takes one goal clause and produces a list of new
clauses.
> Soundness contract: proving all of the new clauses suffices to prove the goal.

> May be verified (requires meta-level proof) or not (requires trust tag.)

Clause

(implies Clause Derived
(foo a b)
(bar a b c)) Processor Clauses
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About clause processors

Clause Processor Verification

Prove correctness with respect to an evaluator function
eval(Term, Alist) — Object which gives a semantics to quoted terms. Example:

(eval ’(if a (comns a ’b) ’foo) ’((a . bar)))
= (bar . b)

Clause processor correctness statement:

(implies (and ... ;5 well-formedness hyps
(eval (conjoin-clauses
(clause-proc goal hints ...))
my-alist))
(eval (disjoin goal) alist))
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The GL clause processor

GL Clause Processor Flow

Bindings
A < symbolic 9-bit integer . L
B — symbolic 6-bit integer Restricted Bindings
R Symbolic . A = sym. 8-bit even natural
Hypothesis Interpreter (LA B < sym. 6-bit odd integer
A is an 8-bit even natural a
B is a 6-bit odd integer
Symbolic
Conclusion Predicate Iy
A[0] = A[8] = 0
\ B[O] =1
Clause * s
If Ais an 8-bit even \ RESUlt I
natural and B is a W
6-bit odd integer, then
spec(A, B) = impl(A, B) +
/ Coverage Relevance
Side . l-lié/ptf:th?sisb) Proving
ag s olds for (a, (Hyp => Concl)
Conditions => suf)flie:es to prove
Bindings Clause
\ cover (a, b)
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The GL clause processor

GL Clause Processor: Inputs

Hints
Bindings » Clause: the goal to be proved
A = bolic 9-bit int¢ . . . . .
B < aymbolic 6.bit nteger » Hypothesis, conclusion, bindings: hints to
Hypothesis the clause processor
A 8-bit tural . . . . .
B is 2 6-bitodd nteger » Bindings associate a symbolic object to
. each free variable in the clause
Conclusion
» Hypothesis gives “type” /"shape”
\ ) constraints on variables
Clause » Conclusion may further restrict variables
Py (may itself be an IMPLIES term).
6-bit odd integer, then
spec(A, B) = impl(A, B)
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The GL clause processor

GL Clause Processor: Side Conditions

Hints
Bindings » Coverage:
e ey ieial » Symbolic simulation (if successful) proves:
Hypothesis The co.nc/usion holds of input 'vecl:tor x if x is
A is an 8-bit even natural a possible value of the symbolic inputs used
B is a 6-bit odd integer . . .
in the simulation.
Conclusion » To relate this to the hypothesis, must show:
If input vector x satisfies the hypothesis, then
~ it is a possible value of the symbolic inputs.
Clause

If Ais an 8-bit even
natural and B is a
6-bit odd integer, then
spec(A, B) = impl(A, B)

Coverage Relevance
Side Hypothesis Proving
oyt holds for (a, b) (Hyp => Concl)
Conditions => suffices to prove
Bindings Clause
cover (a, b)
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The GL clause processor

GL Clause Processor: Side Conditions

Hints

Bindings » Relevance:
A < symbolic 9-bit integer . .
B = symbollc 6-bit Integer » Clause, hypothesis, conclusion are
Hypothesis mdepen.den.t mpu.ts to the clause processor
A is an 8-bit even natural » Symbolic simulation (with coverage)
B is a 6-bit odd integer

effectively proves

Conclusion
spe B) . .
hypothesis = conclusion
. J
. C
Clause Therefc?re, prove that this implies the clause
If Alis an 8-bit even and we're done.

natural and B is a
6-bit odd integer, then »>

S Ry (e Typically trivial by construction.

Coverage Relevance
Side Hypothesis Proving
oyt holds for (a, b) (Hyp => Concl)
Conditions => suffices to prove
Bindings Clause
cover (a, b)
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The GL clause processor

GL Clause Processor: Parametrization

Hints

Bindings
A < symbolic 9-bit integer
B <= symbolic 6-bit integer

Hypothesis
A is an 8-bit even natural
B is a 6-bit odd integer

Conclusion
spec(A, B)

imy B)

-~
Clause

If Ais an 8-bit even
natural and B is a
6-bit odd integer, then
spec(A, B) = impl(A, B)

Sol Swords ()

» Symbolic bindings may cover more than is
accepted by the hypothesis - often better
symbolic simulation performance is achievable
if inputs cover less

» Symbolically simulating the hypothesis on the
inputs yields a symbolic predicate

» Parametrization by that predicate yields new

symbolic objects with coverage restricted to
the space recognized by the hypothesis.

Restricted Bindings
A = sym. 8-bit even natural
B == sym. 6-bit odd integer

ln{erpreter

(Parametrize)—»

Predicate

A[0] = A[8]
B[O]
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The GL clause processor

GL Clause Processor: Simulation

» Symbolically execute the conclusion to Restricted Bindings
determine whether it holds on the
space represented by the restricted

bindings Conclusion
)

Symbolic
Interpreter

» Result: often T or a set of
counterexamples

Result 4

» May fail or produce an ambiguous
result (stack depth overrun,
unimplemented primitive)
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The GL clause processor

GL Clause Processor Flow: Recap

Bindings
A < symbolic 9-bit integer . L
B — symbolic 6-bit integer Restricted Bindings
R Symbolic . A = sym. 8-bit even natural
Hypothesis Interpreter (LA B < sym. 6-bit odd integer
A is an 8-bit even natural a
B is a 6-bit odd integer
Symbolic
Conclusion Predicate Iy
A[0] = A[8] = 0
\ B[O] =1
Clause * s
If Ais an 8-bit even \ RESUlt I
natural and B is a W
6-bit odd integer, then
spec(A, B) = impl(A, B) +
/ Coverage Relevance
Side . l-lié/ptf:th?sisb) Proving
ag s olds for (a, (Hyp => Concl)
Conditions => suf)flie:es to prove
Bindings Clause
\ cover (a, b)
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Verifying the Clause Processor

Verifying GL Clause Processors

» First, verify the generic clause processor:
» Crux: symbolic interpreter is faithful to an evaluator's interpretation of a given
term (next slide)
» Show that given the side conditions, if the interpreter’'s result is always true,
then the clause is a theorem
» Automate the correctness proof of new clause processors by functional
instantiation of the generic one
» DEF-GL-CLAUSE-PROCESSOR macro provided; introduces and verifies a new GL
clause processor.
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Verifying the Clause Processor

Correctness of Interpreter

vV V.V v v Yy

>

term: what we're symbolically simulating

bindings: association of symbolic objects to free variables of term
defs: function definitional equations given to interpreter

env: environment for symbolic object evaluation

EVAL(term, alist) — obj: Evaluator for quoted ACL2 terms
GL-EV(sym-obj, env) — obj: Evaluator for symbolic objects.
INTERP(term, bindings, defs) — sym-obj: Symbolic interpreter.

(Abstract) correctness statement:

Yterm, bindings, defs, env .

(Valist . EVAL(conjoin(defs), alist))
= GL-EV(INTERP(term, bindings, defs), env)
= EVAL(term, GL-EV(bindings, env))
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Verifying the Clause Processor

Correctness of Interpreter

»
>
>
>
>
>
>

term: what we're symbolically simulating

bindings: association of symbolic objects to free variables of term
defs: function definitional equations given to interpreter

env: environment for symbolic object evaluation

EVAL(term, alist) — obj: Evaluator for quoted ACL2 terms
GL-EV(sym-obj, env) — obj: Evaluator for symbolic objects.
INTERP(term, bindings, defs) — sym-obj: Symbolic interpreter.

EVAL(term,...)

Concrete Alist Concrete Result

GL-EV GL-EV

INTERP(term,..

Symbolic Bindings ——— S)ymbolic Result
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Clause Processor Verification Tidbits

Assumed Definitions

>

Definitions used by interpreter are not considered axiomatically true

v

But we assume they are for the interpreter correctness statement
Therefore, we are forced to emit them as output clauses from the clause
processor.

> To automate their proofs, “label” each definition clause by adding a trivially
true hypothesis and use computed hints to eliminate them

> See “clause-processors/use-by-hint.lisp” .

v

((not (use-these-hints
’((:by (:definition len)))))
(equal (len x)
(if (comsp x)
(+ 1 (len (cdr x)))
0)))
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Clause Processor Verification Tidbits

Instantiating derived clauses

(implies (eval (conjoin-clauses (clause-proc clause hints))
some-alist)
(eval (disjoin clause) original-alist))

» Problem: Certain derived clauses need to be instantiated with different alists
or multiple times in the clause processor correctness proof

» Solution: May choose for some-alist any alist you want. Use a Skolem
function:

(defchoose falsifier (a) (x)
(not (eval x a)))

and choose:
(falsifier (conjoin-clauses (clause-proc clause hints))).
» If c is a clause in the list (clause-proc clause hints), then

(eval (conjoin-clauses (clause-proc clause hints))
(falsifier (conjoin-clauses (clause-proc clause hints))))

implies for all a, (eval ¢ a).
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Conclusion

Conclusions

> “Verified interpreter” rather than ‘“verifying compiler” seems to be a win
here.

» Eliminates a lot of theorem proving
> Little performance impact from interpretation (if you're careful)

> Challenging but surprisingly doable to verify complicated clause processors.
» Orchestration between clause processors and computed hints can be very
powerful.
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