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Outlook

- Present a new model of programs and 
assertions for a variety of languages.

- Use model for language-independent 
reasoning. 
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Program logics

- Logics tailored for program correctness:
. programming + assertion languages,

. program + assertion semantics,

. axioms and inference rules.
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Hoare logic

- Program logic for while-loop languages.

- Hoare triple: P {C} Q
. C is a program,

. P and Q are assertions about program state.

- Informal meaning: 
. if C is run in a P-state, then (if it halts) it halts in 

a Q-state.
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Semantics of P {C} Q

- Assertion semantics:

. ⟪-⟫ : Assertions → P(States)

- Program semantics: 

. ⟦-⟧ : Programs → (States → P(States))

- Triple semantics:
. ∀s∊⟪P⟫  .  ⟦C⟧(s) ⊆ ⟪Q⟫
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Proving P {C} Q
- Axioms: 

. e.g.,  P[E/x] {x := E} P

           y=3  {x := y} x=3

- Inference rules:
. e.g., P {C} R and R {C’} Q implies P {C;C’} Q. 

       if y=3 {x := y} x=3  and  x=3 {z := x} z=3                                 

                 then y=3 {x:=y ; z:=x} z=3
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Soundness

- Axioms are true: 
. ∀s∊⟪P[E/x]⟫  .   ⟦x:=E⟧(s) ⊆ ⟪P⟫

- Inference rules preserve truth: 
. If     ∀s∊⟪P⟫  .   ⟦C⟧(s) ⊆ ⟪R⟫, and  

.        ∀s∊⟪R⟫  .   ⟦C’⟧(s) ⊆ ⟪Q⟫

. then ∀s∊⟪P⟫  .   ⟦C;C’⟧(s) ⊆ ⟪Q⟫
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Separation logic

- Program logic for C programs (pointers)
. different program state: vars+heap

. different assertion language: P*Q

. different semantic functions: ⟪-⟫ and ⟦-⟧

. different axioms 

. same inference rules + extras
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Tony has a dream

- ...a unified theory of programming.

- Most languages share basic constructs:   
e.g., sequentiality and concurrency
. Reasoning about general features should be 

language-independent

. Reasoning about specific features should be 
language-specific
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Today

- Toward language-independent reasoning:
. present a very general model of all kinds of 

programs and assertions

. characterize sequentiality and concurrency 

. give semantics to triples in this model

. show that inference rules still hold
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A very general model

- Sets of labeled directed graphs

- Graph represents a program execution:
. nodes – events that occur during execution

. edges – dependency between events

. labels – information flow
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Simple assignment

x :=a+b 
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Assertions as programs

- Use same model for assertions as programs

- Assertions as underspecified programs:
. e.g. “x=2 \/ y=3” any execution in which either 

the last write to x is 2, or last to y is 3. 
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Usage

- To use this for your language, provide 
semantic functions: 

. ⟪-⟫ :  Assertions → P(Graphs)

. ⟦-⟧ : Programs → P(Graphs)

- Today, ignore languages, just deal with 
arbitrary sets of graphs P. 
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Dependency 

- To define sequentiality and concurrency, 
consider dependency between events. 

- p→q means “event q depends on event p”
. Might describe control flow, data flow, etc.
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Traces

- trace: subset of events from an execution

- Represents execution of part of a program

- Lift dependency to traces:
. tp→tq  means  ∃p∈tp, q∈tq with p→q
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Concurrency

- A trace can be separated into concurrent 
parts by partitioning its events: 
. Write tp*tq for concurrent composition of traces.

. tr=tp*tq  iff  tr=tp∪tq and tp∩tq=∅. 

. P*Q = {tr | ∃tp∊P, tq∊Q .  tr=tp*tq}. 
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Concurrency
!"#$%&&'#()*'+,&,-"#)
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tr tp

tq

*

tr = tp*tq
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Sequentiality

- A trace can be separated sequentially by 
partitioning and respecting dependency: 
. Write tp;tq for sequential composition

. tr=tp;tq  iff  tr=tp*tq and ¬(tq→tp)

. P;Q = {tr | ∃tp∊P, tq∊Q .  tr=tp;tq}. 
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Sequentiality
!"#$"%&'()*"+','&-%)
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tr tp tq

;

tr = tp;tq
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Other constructions

- skip = {∅}

- false = ∅

- Disjunction: P⋁Q = P⋃Q

- Conjunction: P⋀Q = P⋂Q
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Refinement

- P ⊨ Q  means  P ⊆ Q

. program P refines program Q

. assertion P semantically entails assertion Q 

. program P satisfies assertion Q

- e.g., P⋀Q ⊨ P, but not P*Q ⊨ P
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Algebra

- skip is unit, false is zero

- (;) is associative, ⋁-distributive, monotonic

. P ⊨ Q implies P;R ⊨ Q;R

- (;) satisfies Kleene laws: 
. P* is least fixpoint of λX.(skip ⋁ (X;P))
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Algebra

- (*) satisfies all properties of (;), plus 
commutativity
. P;Q ⊨ P*Q

- Exchange Law relates (;) and (*):

. (P*Q);(P’*Q’) ⊨ (P;P’)*(Q;Q’) 

24

Wednesday, November 11, 2009



Hoare triples

- New semantics: P {Q} R  means  (P;Q) ⊨ R. 

. any trace tp;tq that starts with tp∊P and then 

does tq∊Q must also be in R
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Inference rules

- if P {Q} R and P {Q} R’ then P {Q} R⋀R’

- if P {Q} R and P’ {Q} R then P⋁P’ {Q} R

- if P {Q} S and S {Q’} R then P {Q;Q’} R
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Sequential Proof
P;(Q;Q’)

⊨ { associativity of (;) }

(P;Q);Q’

⊨ { first assumption, P;Q ⊨ S, and monotonicity of (;) }

S;Q’

⊨ { second assumption S;Q’ ⊨ R } 

R.
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Separation Logic

- if P {Q} R and P’ {Q’} R’ then      
P*P’ {Q*Q’} R*R’  
. Disjoint concurrency

- if P {Q} R then P*F {Q} R*F 
.  Frame rule
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Frame Proof
(P*F);Q

⊨ { commutativity of (*) }

(F*P);Q

⊨ { Exchange theorem, with (Q*skip) = Q }

F*(P;Q)

⊨ { assumption P;Q ⊨ R, monotonicity of (*) } 

R*F.
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Beyond

- Graphs also model logic for non-disjoint 
concurrency: 
. rely/guarantee

- But healthiness conditions are needed: 
. transitivity and acyclity
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Conclusion

- Presented new, general model for 
programs, assertions and program logics

- Characterized concurrency and 
sequentiality

- Language-independent validation of 
inference rules of program logics 
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Parallelism

- Write tp||tq for parallel composition
. tr=tp||tq  iff  tr=tp;tq and tr=tq;tp

- P||Q is parallel composition of P and Q

. P||Q = (U tp∈P, tq∈Q : tp||tq) 
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Parallelism
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Choice

- Write tp[]tq for nondeterministic choice
. tr=tp[]tq  iff  tp=tp∪tq and (tp=∅ or tq=∅)

- P[]Q is choice between P and Q

. P[]Q = (U tp∈P, tq∈Q : tp[]tq) 
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Choice
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Array Assignment

A[a]  :=b 
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b 
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Indirect Assignment

a :=b 
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CSP Interleaving
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CSP Communication
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Combined Example
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Allocation

new a 
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Disposal

dispose a 
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