
Graphical Models
of Separation Logic

Ian Wehrman, Tony Hoare, Peter O’Hearn

Wednesday, November 11, 2009

Outlook

- Present a new model of programs and
assertions for a variety of languages.

- Use model for language-independent
reasoning.

2

Wednesday, November 11, 2009

Program logics

- Logics tailored for program correctness:
. programming + assertion languages,

. program + assertion semantics,

. axioms and inference rules.

3

Wednesday, November 11, 2009

Hoare logic

- Program logic for while-loop languages.

- Hoare triple: P {C} Q
. C is a program,

. P and Q are assertions about program state.

- Informal meaning:
. if C is run in a P-state, then (if it halts) it halts in

a Q-state.

4

Wednesday, November 11, 2009

Semantics of P {C} Q

- Assertion semantics:

. ⟪-⟫ : Assertions → P(States)

- Program semantics:

. ⟦-⟧ : Programs → (States → P(States))

- Triple semantics:
. ∀s∊⟪P⟫ . ⟦C⟧(s) ⊆ ⟪Q⟫

5

Wednesday, November 11, 2009

Proving P {C} Q
- Axioms:

. e.g., P[E/x] {x := E} P

 y=3 {x := y} x=3

- Inference rules:
. e.g., P {C} R and R {C’} Q implies P {C;C’} Q.

 if y=3 {x := y} x=3 and x=3 {z := x} z=3

 then y=3 {x:=y ; z:=x} z=3

6

Wednesday, November 11, 2009

Soundness

- Axioms are true:
. ∀s∊⟪P[E/x]⟫ . ⟦x:=E⟧(s) ⊆ ⟪P⟫

- Inference rules preserve truth:
. If ∀s∊⟪P⟫ . ⟦C⟧(s) ⊆ ⟪R⟫, and

. ∀s∊⟪R⟫ . ⟦C’⟧(s) ⊆ ⟪Q⟫

. then ∀s∊⟪P⟫ . ⟦C;C’⟧(s) ⊆ ⟪Q⟫

7

Wednesday, November 11, 2009

Separation logic

- Program logic for C programs (pointers)
. different program state: vars+heap

. different assertion language: P*Q

. different semantic functions: ⟪-⟫ and ⟦-⟧

. different axioms

. same inference rules + extras

8

Wednesday, November 11, 2009

Tony has a dream

- ...a unified theory of programming.

- Most languages share basic constructs:
e.g., sequentiality and concurrency
. Reasoning about general features should be

language-independent

. Reasoning about specific features should be
language-specific

9

Wednesday, November 11, 2009

Today

- Toward language-independent reasoning:
. present a very general model of all kinds of

programs and assertions

. characterize sequentiality and concurrency

. give semantics to triples in this model

. show that inference rules still hold

10

Wednesday, November 11, 2009

A very general model

- Sets of labeled directed graphs

- Graph represents a program execution:
. nodes – events that occur during execution

. edges – dependency between events

. labels – information flow

11

Wednesday, November 11, 2009

Simple assignment

x :=a+b

!""#$%&'%()*+*),*+*-*.*

x

a+b

x

a

y

b

12

x := x + y

Wednesday, November 11, 2009

Assertions as programs

- Use same model for assertions as programs

- Assertions as underspecified programs:
. e.g. “x=2 \/ y=3” any execution in which either

the last write to x is 2, or last to y is 3.

13

Wednesday, November 11, 2009

Usage

- To use this for your language, provide
semantic functions:

. ⟪-⟫ : Assertions → P(Graphs)

. ⟦-⟧ : Programs → P(Graphs)

- Today, ignore languages, just deal with
arbitrary sets of graphs P.

14

Wednesday, November 11, 2009

Dependency

- To define sequentiality and concurrency,
consider dependency between events.

- p→q means “event q depends on event p”
. Might describe control flow, data flow, etc.

15

Wednesday, November 11, 2009

Traces

- trace: subset of events from an execution

- Represents execution of part of a program

- Lift dependency to traces:
. tp→tq means ∃p∈tp, q∈tq with p→q

16

Wednesday, November 11, 2009

Concurrency

- A trace can be separated into concurrent
parts by partitioning its events:
. Write tp*tq for concurrent composition of traces.

. tr=tp*tq iff tr=tp∪tq and tp∩tq=∅.

. P*Q = {tr | ∃tp∊P, tq∊Q . tr=tp*tq}.

17

Wednesday, November 11, 2009

Concurrency
!"#$%&&'#()*'+,&,-"#)

18

tr tp

tq

*

tr = tp*tq

Wednesday, November 11, 2009

Sequentiality

- A trace can be separated sequentially by
partitioning and respecting dependency:
. Write tp;tq for sequential composition

. tr=tp;tq iff tr=tp*tq and ¬(tq→tp)

. P;Q = {tr | ∃tp∊P, tq∊Q . tr=tp;tq}.

19

Wednesday, November 11, 2009

Sequentiality
!"#$"%&'()*"+','&-%)

20

tr tp tq

;

tr = tp;tq

Wednesday, November 11, 2009

Other constructions

- skip = {∅}

- false = ∅

- Disjunction: P⋁Q = P⋃Q

- Conjunction: P⋀Q = P⋂Q

21

Wednesday, November 11, 2009

Refinement

- P ⊨ Q means P ⊆ Q

. program P refines program Q

. assertion P semantically entails assertion Q

. program P satisfies assertion Q

- e.g., P⋀Q ⊨ P, but not P*Q ⊨ P

22

Wednesday, November 11, 2009

Algebra

- skip is unit, false is zero

- (;) is associative, ⋁-distributive, monotonic

. P ⊨ Q implies P;R ⊨ Q;R

- (;) satisfies Kleene laws:
. P* is least fixpoint of λX.(skip ⋁ (X;P))

23

Wednesday, November 11, 2009

Algebra

- (*) satisfies all properties of (;), plus
commutativity
. P;Q ⊨ P*Q

- Exchange Law relates (;) and (*):

. (P*Q);(P’*Q’) ⊨ (P;P’)*(Q;Q’)

24

Wednesday, November 11, 2009

Hoare triples

- New semantics: P {Q} R means (P;Q) ⊨ R.

. any trace tp;tq that starts with tp∊P and then

does tq∊Q must also be in R

25

Wednesday, November 11, 2009

Inference rules

- if P {Q} R and P {Q} R’ then P {Q} R⋀R’

- if P {Q} R and P’ {Q} R then P⋁P’ {Q} R

- if P {Q} S and S {Q’} R then P {Q;Q’} R

26

Wednesday, November 11, 2009

Sequential Proof
P;(Q;Q’)

⊨ { associativity of (;) }

(P;Q);Q’

⊨ { first assumption, P;Q ⊨ S, and monotonicity of (;) }

S;Q’

⊨ { second assumption S;Q’ ⊨ R }

R.

27

Wednesday, November 11, 2009

Separation Logic

- if P {Q} R and P’ {Q’} R’ then
P*P’ {Q*Q’} R*R’
. Disjoint concurrency

- if P {Q} R then P*F {Q} R*F
. Frame rule

28

Wednesday, November 11, 2009

Frame Proof
(P*F);Q

⊨ { commutativity of (*) }

(F*P);Q

⊨ { Exchange theorem, with (Q*skip) = Q }

F*(P;Q)

⊨ { assumption P;Q ⊨ R, monotonicity of (*) }

R*F.

29

Wednesday, November 11, 2009

Beyond

- Graphs also model logic for non-disjoint
concurrency:
. rely/guarantee

- But healthiness conditions are needed:
. transitivity and acyclity

30

Wednesday, November 11, 2009

Conclusion

- Presented new, general model for
programs, assertions and program logics

- Characterized concurrency and
sequentiality

- Language-independent validation of
inference rules of program logics

31

Wednesday, November 11, 2009

References

- Hoare, Wehrman, O’Hearn. Graphical Models of Separation
Logic. Marktoberdorf Summer School 2008.

- Wehrman, Hoare, O’Hearn. Graphical Models of Separation
Logic. Information Processing Letters, 2009.

- Hoare, Möller, Struth, Wehrman. Concurrent Kleene
Algebra. CONCUR 2009.

- Hoare, Möller, Struth, Wehrman. Foundations of Concurrent
Kleene Algebra. REL/MICS 2009.

32

Wednesday, November 11, 2009

33

Wednesday, November 11, 2009

Parallelism

- Write tp||tq for parallel composition
. tr=tp||tq iff tr=tp;tq and tr=tq;tp

- P||Q is parallel composition of P and Q

. P||Q = (U tp∈P, tq∈Q : tp||tq)

34

Wednesday, November 11, 2009

Parallelism
!"#"$$%$&'%("#")*+&

35

Wednesday, November 11, 2009

Choice

- Write tp[]tq for nondeterministic choice
. tr=tp[]tq iff tp=tp∪tq and (tp=∅ or tq=∅)

- P[]Q is choice between P and Q

. P[]Q = (U tp∈P, tq∈Q : tp[]tq)

36

Wednesday, November 11, 2009

Choice
!"#$%&%'()#)*+,-,."),%-

37

Wednesday, November 11, 2009

Array Assignment

A[a] :=b

!""#$%#&&'()*+),-%!./0%-1%$%

A[a]

b

x

a

y

b

38

A[x] = y

Wednesday, November 11, 2009

Indirect Assignment

a :=b

!"#$%&'()*++$,"-&"(.)/01).2)3)

a

b

x

a

y

b

39

x* = y

Wednesday, November 11, 2009

CSP Interleaving

40

b ?a

!"#$%&'()*(+,%&-.$+/0$1$2345$6$#2577$

b a

y

a

c!d
x

d

c d

c!x | (b?y . P(y))

Wednesday, November 11, 2009

CSP Communication

41

b ?a

!"#$%&''()*%+,&)-$./0$1$.23$4$#536$

y

a

b !a
x

a

b a

b!x | (b?y . P(y))

Wednesday, November 11, 2009

Combined Example

42

c?!

!"#$%&'()")(*)"+,)-)./01)2)34."516)-)30,6)

c !

x :="# x

"#

x

$

y

%

d ?&
y

&

d !&
z

!

d &

z

!

x

"#

(x = x+y) ; (c?z . (d!(x-z) | d?y))

Wednesday, November 11, 2009

Allocation

new a

!"#$%&'((")$'))*%'+*(,$("#$-$.$/0-1$

x

a

43

Wednesday, November 11, 2009

Disposal

dispose a

!"#$%#&'()*+,,-./)

x

a

44

Wednesday, November 11, 2009

