Graphical Models
of Separation Logic

lan Wehrman, Tony Hoare, Peter O’Hearn

eeeeeeeeeeeeeeeeeeeeeeeee

Outlook

- Present a new model of programs and
assertions for a variety of languages.

- Use model for language-independent
reasoning.

Wednesday, November 11, 2009

Program logics

- Logics tailored for program correctness:
programming + assertion languages,
program + assertion semantics,

axioms and inference rules.

Wednesday, November 11, 2009

Hoare logic

- Program logic for while-loop languages.
- Hoare triple: P {C} Q

C is a program,

P and Q are assertions about program state.

- Informal meaning:

if C is run in a P-state, then (if it halts) it halts in
a Q-state.

Wednesday, November 11, 2009

Semantics of P {C} Q

- Assertion semantics:

-) :Assertions — ‘P(States)

- Program semantics:

[-1 :Programs — (States — P(States))

- Triple semantics:

vse(P) . [CI(s) € <Q)

Wednesday, November 11, 2009

Proving P {C} Q

- Axioms:
e.g., P[E/x] {x :=E} P
y=3 {x: =y} x=3
- Inference rules:
e.g.,P {C} Rand R {C’} Q implies P {C;C’} Q.
if y=3 {x =y} x=3 and x=3 {z := x} z=3
then y=3 {x:=y ; zz=x} z=3

Wednesday, November 11, 2009

Soundness

- Axioms are true:
vse{P[E/x]) . [x:=E](s) € <P)
- Inference rules preserve truth:
If vse(P) . [CI(s) € <R),and
vse(R) . [C’](s) € <Q)
then vse(P) . [C;C](s) € <Q)

Wednesday, November 11, 2009

Separation logic

- Program logic for C programs (pointers)

different program state: vars+heap
different assertion language: P*Q

different semantic functions: -) and [-]

different axioms

same inference rules + extras

Wednesday, November 11, 2009

Tony has a dream

- ... unified theory of programming.

- Most languages share basic constructs:
e.g., sequentiality and concurrency

Reasoning about general features should be
language-independent

Reasoning about specific features should be
language-specific

Wednesday, November 11, 2009

Today

- Toward language-independent reasoning:

present a very general model of all kinds of
programs and assertions

characterize sequentiality and concurrency
give semantics to triples in this model

show that inference rules still hold

Wednesday, November 11, 2009

A very general model

- Sets of labeled directed graphs

- Graph represents a program execution:
nodes — events that occur during execution
edges — dependency between events

labels — information flow

Wednesday, November 11, 2009

Simple assignment

T
—>
a
. T
r:=a+b 4>
y a+b
>
b

X =XTYy

Wednesday, November 11, 2009

Assertions as programs

- Use same model for assertions as programs

- Assertions as underspecified programs:

e.g."x=2 \/ y=3"" any execution in which either
the last write to x is 2, or last to y is 3.

Wednesday, November 11, 2009

Usage

- To use this for your language, provide
semantic functions:

(-) : Assertions = P(Graphs)
[-1 :Programs — ‘P(Graphs)

- Today, ignore languages, just deal with
arbitrary sets of graphs P.

Wednesday, November 11, 2009

Dependency

- To define sequentiality and concurrency,
consider dependency between events.

- p—q means “‘event q depends on event p”’

Might describe control flow, data flow, etc.

Wednesday, November 11, 2009

Traces

- trace: subset of events from an execution
- Represents execution of part of a program

- Lift dependency to traces:

tp—tq means 3Jpetp, gqetq with p—q

Wednesday, November 11, 2009

Concurrency

- A trace can be separated into concurrent
parts by partitioning its events:

Write tp*tq for concurrent composition of traces.

tr=tp*tq iff tr=tputg and tpntgq=2.

P*Q — {tl’ | EltPGP, tqu . tl‘=tp*tq}.

Wednesday, November 11, 2009

tr

Concurrency

tp
—
— b
R)
tq

Sequentiality

- A trace can be separated sequentially by
partitioning and respecting dependency:

Write tp;tq for sequential composition
tr=tp;tq iff tr=tp*tq and —(tq—tp)

P;Q = {tr | 3tpeP,tqeQ . tr=tp;tq}.

Wednesday, November 11, 2009

tr

Sequentiality

tr = tp;tq

20

Other constructions

skip = {2}

false = o

Disjunction: PVQ = PuQ
Conjunction: PAQ = PnQ

21

Refinement

- PEQ means PC Q

program P refines program Q
assertion P semantically entails assertion Q

program P satisfies assertion Q

- e.g2,PAQ = Pbut not PFQEP

22

Wednesday, November 11, 2009

Algebra

- skip is unit, false is zero

- (;) is associative, V-distributive, monotonic

P = Q implies P;R = Q;R

- (;) satisfies Kleene laws:

P* is least fixpoint of AX.(skip V (X;P))

23

Wednesday, November 11, 2009

Algebra

- (%) satisfies all properties of (;), plus
commutativity

P;Q = P*Q
- Exchange Law relates (;) and (*):

(P*Q):(P*Q) = (PP)*(QQ)

24

Wednesday, November 11, 2009

Hoare triples

- New semantics: P {Q} R means (P;Q) = R.

any trace tp;tq that starts with tpeP and then

does tqeQ must also be in R

25

Wednesday, November 11, 2009

Inference rules

- if P{Q} R and P {Q} R’ then P {Q} RAR’
- if P{Q} Rand P’ {Q} R then PVvP’ {Q} R
- ifP{Q}Sand S{Q’} R then P {Q;Q’} R

26

Sequential Proof

P;(Q;Q’)

= { associativity of (;) }
(P;Q);Q’

= { first assumption, P;Q & S, and monotonicity of (;) }
5,Q’

— { second assumption S;Q’ =R}

R.

27

Wednesday, November 11, 2009

Separation Logic

- if P{Q} Rand P’ {Q’} R’ then
P*P’ {Q*Q’} R*R’

Disjoint concurrency
- if P {Q} R then P*F {Q} R*F

Frame rule

28

Frame Proof

(P*F);Q

= { commutativity of (*) }
(F*P);Q

= { Exchange theorem, with (Q*skip) = Q }
F4(P;Q)

= { assumption P;Q = R, monotonicity of (*) }

R*F.

29

Beyond

- Graphs also model logic for non-disjoint
concurrency:

rely/guarantee

- But healthiness conditions are needed:

transitivity and acyclity

30

Wednesday, November 11, 2009

Conclusion

- Presented new, general model for
programs, assertions and program logics

- Characterized concurrency and
sequentiality

- Language-independent validation of
inference rules of program logics

31

Wednesday, November 11, 2009

References

- Hoare,Wehrman, O’Hearn. Graphical Models of Separation
Logic. Marktoberdorf Summer School 2008.

- Wehrman, Hoare, O’Hearn. Graphical Models of Separation
Logic. Information Processing Letters, 2009.

- Hoare, Moller, Struth, YWWehrman. Concurrent Kleene
Algebra. CONCUR 2009.

- Hoare, Moller, Struth, Wehrman. Foundations of Concurrent
Kleene Algebra. REL/MICS 2009.

32

Wednesday, November 11, 2009

33

Wednesday, November 11, 2009

Parallelism

- Write tp||tq for parallel composition
tr=tp||tq iff tr=tp;tg and tr=tqg;tp
- P||Q is parallel composition of P and Q

PI|Q = (U tpeF tqeQ : tp||tq)

34

Wednesday, November 11, 2009

Parallelism

eeeeeeeeeeeeeeeeeeeeeeeee

Choice

- Write tp[]tq for nondeterministic choice
tr=tp[]tq iff tp=tputqg and (tp=9 or tq=9)
- P[]Q is choice between P and Q

P[1Q = (U tpeF tqeQ : tp[]tq)

36

Wednesday, November 11, 2009

Choice

37

Wednesday, November 11, 2009

Array Assignment

Alx] =y

38

Indirect Assighment

39

eeeeeeeeeeeeeeeeeeeeeeeee

CSP Interleaving

c!x | (b?y . P(y))

40

CSP Communication

b!x | (bly . P(y))

4]

Combined Example

cl3

(x = xty) ;(c?z . (d!(x-z) | d?y))

42

Allocation

new a 7>

43

Wednesday, November 11, 2009

Disposal

8

a dispose a

44

Wednesday, November 11, 2009

