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Outlook

- Present a new model of programs and
assertions for a variety of languages.

- Use model for language-independent
reasoning.
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Program logics

- Logics tailored for program correctness:
programming + assertion languages,
program + assertion semantics,

axioms and inference rules.
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Hoare logic

- Program logic for while-loop languages.
- Hoare triple: P {C} Q

C is a program,

P and Q are assertions about program state.

- Informal meaning:

if C is run in a P-state, then (if it halts) it halts in
a Q-state.
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Semantics of P {C} Q

- Assertion semantics:

-) :Assertions — ‘P(States)

- Program semantics:

[-1 :Programs — (States — P(States))

- Triple semantics:

vse(P) . [CI(s) € <Q)
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Proving P {C} Q

- Axioms:
e.g., P[E/x] {x :=E} P
y=3 {x: =y} x=3
- Inference rules:
e.g.,P {C} Rand R {C’} Q implies P {C;C’} Q.
if y=3 {x =y} x=3 and x=3 {z := x} z=3
then y=3 {x:=y ; zz=x} z=3
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Soundness

- Axioms are true:
vse{P[E/x]) . [x:=E](s) € <P)
- Inference rules preserve truth:
If  vse(P) . [CI(s) € <R),and
vse(R) . [C’](s) € <Q)
then vse(P) . [C;C](s) € <Q)
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Separation logic

- Program logic for C programs (pointers)

different program state: vars+heap
different assertion language: P*Q

different semantic functions: -) and [-]

different axioms

same inference rules + extras
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Tony has a dream

- ... unified theory of programming.

- Most languages share basic constructs:
e.g., sequentiality and concurrency

Reasoning about general features should be
language-independent

Reasoning about specific features should be
language-specific
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Today

- Toward language-independent reasoning:

present a very general model of all kinds of
programs and assertions

characterize sequentiality and concurrency
give semantics to triples in this model

show that inference rules still hold
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A very general model

- Sets of labeled directed graphs

- Graph represents a program execution:
nodes — events that occur during execution
edges — dependency between events

labels — information flow
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Simple assignment

T
—>
a
. T
r:=a+b 4>
y a+b
>
b

X =XTYy
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Assertions as programs

- Use same model for assertions as programs

- Assertions as underspecified programs:

e.g."x=2 \/ y=3"" any execution in which either
the last write to x is 2, or last to y is 3.
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Usage

- To use this for your language, provide
semantic functions:

(-) : Assertions = P(Graphs)
[-1 :Programs — ‘P(Graphs)

- Today, ignore languages, just deal with
arbitrary sets of graphs P.
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Dependency

- To define sequentiality and concurrency,
consider dependency between events.

- p—q means “‘event q depends on event p”’

Might describe control flow, data flow, etc.
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Traces

- trace: subset of events from an execution
- Represents execution of part of a program

- Lift dependency to traces:

tp—tq means 3Jpetp, gqetq with p—q
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Concurrency

- A trace can be separated into concurrent
parts by partitioning its events:

Write tp*tq for concurrent composition of traces.

tr=tp*tq iff tr=tputg and tpntgq=2.

P*Q — {tl’ | EltPGP, tqu . tl‘=tp*tq}.
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Sequentiality

- A trace can be separated sequentially by
partitioning and respecting dependency:

Write tp;tq for sequential composition
tr=tp;tq iff tr=tp*tq and —(tq—tp)

P;Q = {tr | 3tpeP,tqeQ . tr=tp;tq}.
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tr

Sequentiality

tr = tp;tq
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Other constructions

skip = {2}

false = o

Disjunction: PVQ = PuQ
Conjunction: PAQ = PnQ
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Refinement

- PEQ means PC Q

program P refines program Q
assertion P semantically entails assertion Q

program P satisfies assertion Q

- e.g2,PAQ = Pbut not PFQEP

22

Wednesday, November 11, 2009



Algebra

- skip is unit, false is zero

- (;) is associative, V-distributive, monotonic

P = Q implies P;R = Q;R

- (;) satisfies Kleene laws:

P* is least fixpoint of AX.(skip V (X;P))

23
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Algebra

- (%) satisfies all properties of (;), plus
commutativity

P;Q = P*Q
- Exchange Law relates (;) and (*):

(P*Q):(P*Q) = (PP)*(QQ)

24
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Hoare triples

- New semantics: P {Q} R means (P;Q) = R.

any trace tp;tq that starts with tpeP and then

does tqeQ must also be in R

25
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Inference rules

- if P{Q} R and P {Q} R’ then P {Q} RAR’
- if P{Q} Rand P’ {Q} R then PVvP’ {Q} R
- ifP{Q}Sand S{Q’} R then P {Q;Q’} R
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Sequential Proof

P;(Q;Q’)

= { associativity of (;) }
(P;Q);Q’

= { first assumption, P;Q & S, and monotonicity of (;) }
5,Q’

— { second assumption S;Q’ =R}

R.

27
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Separation Logic

- if P{Q} Rand P’ {Q’} R’ then
P*P’ {Q*Q’} R*R’

Disjoint concurrency
- if P {Q} R then P*F {Q} R*F

Frame rule
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Frame Proof

(P*F);Q

= { commutativity of (*) }
(F*P);Q

= { Exchange theorem, with (Q*skip) = Q }
F4(P;Q)

= { assumption P;Q = R, monotonicity of (*) }

R*F.
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Beyond

- Graphs also model logic for non-disjoint
concurrency:

rely/guarantee

- But healthiness conditions are needed:

transitivity and acyclity

30

Wednesday, November 11, 2009



Conclusion

- Presented new, general model for
programs, assertions and program logics

- Characterized concurrency and
sequentiality

- Language-independent validation of
inference rules of program logics
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Parallelism

- Write tp||tq for parallel composition
tr=tp||tq iff tr=tp;tg and tr=tqg;tp
- P||Q is parallel composition of P and Q

PI|Q = (U tpeF tqeQ : tp||tq)
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Parallelism
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Choice

- Write tp[]tq for nondeterministic choice
tr=tp[]tq iff tp=tputqg and (tp=9 or tq=9)
- P[]Q is choice between P and Q

P[1Q = (U tpeF tqeQ : tp[]tq)

36
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Choice
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Array Assignment

Alx] =y
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Indirect Assighment
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CSP Interleaving

c!x | (b?y . P(y))
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CSP Communication

b!x | (bly . P(y))

4]




Combined Example

cl3

(x = xty) ;(c?z . (d!(x-z) | d?y))
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Allocation

new a 7>
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Disposal

8

a dispose a
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