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b Outline 

� Overview of KAS
� Motivation, design, features
� Appli
ations
� Pro
edures, heuristi
s, examples
� Untrusted Clause Pro
essing
� Are we there yet? No.
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b Motivation - 1 

� Most theorems are proven by simpli�
ation orindu
tion followed by simpli�
ation�Most proofs about hardware/software systemsredu
e to de�ning and proving invariants� Proving (indu
tive) invariants requires 
onsiderable
ase analysis� Main Idea:� De�ne an eÆ
ient term rewriter and implement pro-
edures and heuristi
s as sets of rewrite rules� Eventually, we want an untrusted 
lause pro-
essor
� So, write KAS in ACL2 and prove it 
orre
t - easy.
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b Start from Simple 

� Mutually re
ursive fun
tion 
lique:� (apply-rule trm rl 
tx) { apply a rewrite rule� (try-rules trm rls 
tx) { apply a list of rules� (rewrite-if args 
tx) { rewrite args of if term� (rewrite-list lst 
tx) { rewrite a list of args� (rewrite-args args fn 
tx) { rewrite args of a term� (rewrite-step trm 
tx) { rewrite args then apply rules� (rewrite-term trm 
tx) { �xpoint of rewrite-step� Top-level fun
tion:(defun simple-rewrite (trm) (rewrite-term trm ()))
� 
tx is a list of equalities whi
h are 
urrentlyassumed� Extended when the true and false bran
h of an ifterm are rewritten
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b KAS Ar
hite
ture Overview 

� KAS stands for Kernel Ar
hite
ture Simpli�er� KAS is best viewed as an optimized elaboration ofthis simple rewriter� Similar to ACL2, KAS uses inside-out, ordered, 
on-ditional, rewriting
� How is this a simpli�er?� Implement simpli�
ation on top of KAS as instan
esof a meta-pro
ess� Transform terms (soundly) via rewrite rules� Support eÆ
ient 
omplex user fun
tions to guide ap-pli
ation of these rewrite rules
� Interfa
es with ACL2 as a trusted 
lause pro-
essor
� Loads proven rules and de�nitions from ACL2 world5



b Two main areas of optimization 

� Terms and Memory management
� How do we represent and store terms eÆ
iently?
� How do we manage this memory?
� Memoization and Context management
� How do we 
a
he previous 
omputations?
� How do we deal with 
hanging 
ontexts?
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b Terms and Memory management - 1 

�Terms are main 
onstru
t manipulated in KASand ACL2� Use large �xnum arrays in stobjs to store nodes interms� Fixnum indexes into these arrays used as pointers
� Many bene�ts 
ompared to using 
ons, but
� It is less elegant { mitigated by use of ma
ros
Æ Fun
tions and ma
ros also used for print/debug� Need for garbage 
olle
tion { mitigated by node pro-motion s
heme
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b Terms and Memory management - 2 

� Node Promotion Rules� All nodes are initially \junk" and promoted ifone of the following applies:
� (a) node is a quoted 
onstant or variable
� (b) node is in normal form in the 
urrent 
ontext� (
) arguments are promoted and mat
hes previoustransient nodeÆ Use simple 
a
he to store previous viable mat
hesÆ In
rementally grow set of promoted nodes { withsome user 
ontrol
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b Terms and Memory management - 3 

� Transient nodes
� are not uniquely 
onstru
ted
� have minimal storage per node
� are re
laimed eÆ
iently by \sta
k" deallo
ation
� Promoted nodes
� are 
onstru
ted uniquely
� in
lude storage for memoized 
omputations
� are never re
laimed and never demoted
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b Memoization and Context management - 1 

� Need to 
a
he rewrite results to avoid repeated
omputation� Every promoted node in
ludes a repnode �eld point-ing to another node� An invariant of KAS exe
ution is that a node is alwaysequivalent to its repnode assuming the 
urrent 
ontextÆWhen an equality is assumed from if test, a repnodeis 
reated� When KAS rewrites a node, it �rst 
onsultsrepnode as repla
ement� repnodes are updated to resulting normal-forms whenrewriting 
ompletes
� Obviously we need a system for undoing repn-ode assignments when we pop 
ontexts
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b Memoization and Context management - 2 

� Every repnode is tagged with a 
ontext ve
tor� A 
ontext ve
tor is a subset of the 
urrent 
ontexten
oded as a bitve
tor� Invariant is every node is equivalent to its repnodeassuming its 
ontext ve
tor
� Every fun
tion in main rewrite loop returns
ontext ve
tor along with rewrite result� An example to demonstrate 
ontext manage-ment of repnodes:(if (= a b) (if (= b 
) (= (f a) (f 
))(= (f a) (f b)))(= (f a) (f a)))
� repnode is updated or undone for (f a) tomat
h equality in ea
h leaf
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b Several Additional Optimizations 

� Avoiding Lisp Exe
ution Overhead� �xnums, stobjs, and more �xnums { no 
onsing inmain loop� inlining and tail re
ursion to avoid overhead of fun
-tion 
alls� Spe
ialized Data Stru
tures� undo sta
k whi
h is a sta
k of lists of \undos" to beperformed when popping the 
ontext
� Additional Memoization
� KAS tags nodes whi
h have been rewritten
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b User Control and Interfa
ing - 1 

� KAS imports 
onditional rewrite rules provenas ACL2 theorems� Fine-grained rewrite 
ontrol supported throughsieve operator
� Sieves 
an a

ess ACL2 state and KAS logi
 stobj
� Sieves 
an a

ess and update user stobj
� Sieves 
an determine if a rule is applied or not
� Sieves return a list of updates to the KAS logi
 stobjÆ Updates are restri
ted to have no e�e
t on soundnessof KAS
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b User Control and Interfa
ing - 2 

� The 
urrent list of sieve fun
tion updates:operation side effe
t---------------- --------------------------------------set-var-bound bind a free variable in a rewriteset-rule-sieves modify the filters atta
hed to a ruleset-rule-enabled enable or disable a rewrite ruleset-rule-
tr modify 
ounter for number of rule appsset-node-step set node allo
ation in
remental stepset-node-limit set node allo
ation limits
hange-rule-order 
hange the order of rewrite rulesset-rule-tra
ed enable or disable rule tra
e outputset-user-mark set or 
lear a boolean mark on a node
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b Implemented, Tested, Res
inded 

� In�nite Rewriting
� Only support un
onditional rewriting
� Not enough bene�t for 
ompli
ations in 
ontexts
� Targeted rewriting
� Only rewrite the subterms whi
h 
hange in a 
ontext
� Required maintaining ba
kpointers
� Allow user to rewrite everything
� Use spe
ial operators for 
ontexts, hypothesis, et
.
� Contextual rewriting
� Fairly easy to avoid and it 
ompli
ated proof e�ort15



b Simulating ACL2 simpli�
ation 

� Type pres
ription and Forward 
haining� Contextual memoization will retain 
omputed fa
tsneeded to relieve hypothesis of rules� Congruen
e rewriting� KAS only supports equal, but other equivalen
es 
anbe \mapped" to equal through normalizing fun
tions(defthm set=-to-equal (equal (set= x y) (= (n-s x) (n-s y))))
� Linear Arithmeti
 { a bit more involved� De�ne rules to normalize linear terms pla
ingoperands in term order� De�ne rule to sele
tively 
ombine and fa
tor out linearterms with mat
hing �rst operands� Can be used for other \linear" operators su
h as setoperations� Other examples: BDDs, Lambda rewriting(mostly), ... 16



b Example: Case Splitting 

� Introdu
e identity fun
tions used as stages inmeta-pro
ess(defun prv (x) x) (defun prv2 (x) x) (defun prv3 (x) x)
� Prove rewrite rules to sequen
e term transi-tions in meta-pro
ess� Use sieves to de�ne 
omplex fun
tions or fun
tionsoutside of term transformation� 
ase-split sele
ts a term based on weighted o

ur-ren
e in if tests(defthm (equal (prv3 t) t))(defthm (equal (prv2 (if x y z)) (if x y z)))(defthm (equal (prv2 (if x t (hide z))) (if x t (prv z)))(defthm (equal (prv2 (if x (prv3 y) z))(prv2 (if x (prv y) z))))(defthm (equal (prv x) x))(defthm (implies (sieve (
ase-split C))(equal (prv x)(prv2 (if C (prv3 x) (hide x))))))
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b Example: Failure Reporting 

� A di�erent meta-pro
ess for reporting a failing
ase as a list of predi
ates� Designed to work with 
ase splitting pro
ess usingrfl and gfl identity fun
tions(defthm (implies (sieve (report-to-
w leaf))(equal (rfl leaf x) x)))(defthm (implies (sieve (report-to-
w tst))(equal (rfl (if tst tbr fbr) x)(rfl tbr x))))(defthm (implies (and (sieve (non-nilp tbr))(sieve (report-to-
w (not tst))))(equal (rfl (if tst tbr fbr) x)(rfl fbr x))))(defthm (equal (gfl x) (fail (rfl x x))))(defthm (equal (gfl t) t))
� Standard defthmk ma
ro takes a term � and
reates a 
all to KAS with (gfl (prv �))
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b Appli
ation: Proving Invariants - 1 

� Start with a stuttering re�nement for a simplepipeline model
� Stuttering re�nement between ma level and isa level� Example modi�ed from DLX pipeline by Mano-lios,Srinivasan
� Predi
ate de�ning a mat
hed ma state:(defun ma-mat
hes-isa (x)(if (
ommit x)(equal (rep (ma x)) (isa (rep x)))(and (equal (rep (ma x)) (rep x))(< (rank (ma x)) (rank x)))))
� rep maps ma state to isa state
� rank is well-founded measure on ma states
� 
ommit de�nes when ma will make isa visible step
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b Appli
ation: Proving Invariants - 2 

� Idea fromManolios,Srinivasan: let the ma stepsbuild invariant
� Leads to brutal 
ase explosion in a few steps(defun maX4 (m) (ma (ma (ma (ma (flush m))))))(defun maX5 (m) (ma (maX4 m)))(defun maX6 (m) (ma (maX5 m)))(defun maX7 (m) (ma (maX6 m)))(defun maX8 (m) (ma (maX7 m)))(defthmk maX4-proof (ma-mat
hes-isa (maX4 m)))(defthmk maX5-proof (ma-mat
hes-isa (maX5 m)))(defthmk maX6-proof (ma-mat
hes-isa (maX6 m)))(defthmk maX7-proof (ma-mat
hes-isa (maX7 m)))(defthmk maX8-proof (ma-mat
hes-isa (maX8 m)))
� ACL2 blows up on maX5, KAS takes a minutefor maX8, but how about proof from arbitrarystate:(defthmk ma-proof (ma-mat
hes-isa (ma (ma (ma (ma x))))))
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b Appli
ation: Proving Invariants - 3 

� Extend this basi
 idea and in
lude �nite statesear
h� Assume domain of rep is �nite list of booleansÆ Introdu
e Skolem 
onstants to model arbitrary data,
ommands, identi�ers, et
.� De�ne next* as the run to 
ommit fun
tion:(defun next* (s)(de
lare (xargs :measure (rank s)))(if (
ommit s) (next s) (next* (next s))))
� Explore the states starting with (rep (init))and transitioning with (rep (next* s))� Use KAS to rewrite (rep (next* s)) with heuris-ti
s to 
ontrol expansion of next fun
tion integratedwith 
ase splitting� Iterate until you rea
h a �xpoint or �nd a state whi
hinvalidates the invarint (inv (rep s)) whi
h you aretrying to prove 21



b Proving Clause Pro
essor - 1 

� We would like to prove a 
lause-pro
essorrule for kernel-simplify(defun kernel-simplify (
l hint state ls us)(de
lare (xargs :stobjs state ls us))(mv-let (erp term ttree state ls us)(kern-simplify-main 
l hint ls us state)(de
lare (ignore ttree))(mv erp (list (list term)) state ls us)))(defthm 
orre
tness-of-kernel-simplify(implies (and (pseudo-term-listp 
l)(alistp a)(my-evl(
onjoin-
lauses(
lauses-result (kernel-simplify 
l hint st ls us))) a)))(my-evl (disjoin 
l) a)))
� Where my-evl is an evaluator over a usefulset of fun
tions for a given problem� If your appli
ation of KAS requires new fun
tions,then a new evaluator will also be needed� But, we need an invariant to persist on logi
state stobj ls, so no di
e...
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b Proving Clause Pro
essor - 2 

� Ok, we 
an 
reate lo
al-stobjs and ensure theproper invariants are maintained in all 
alls(defthm 
orre
tness-of-kernel-simplify(implies (and (pseudo-term-listp 
l)(alistp a)(my-evl(
onjoin-
lauses(
lauses-result (kernel-simplify 
l hint st))) a)))(my-evl (disjoin 
l) a)))
� Another potential problem. KAS uses the-orems from the 
urrent world and in order toprove this result...� ...we will need theorems relating these theorems tomy-evl 
omputation

23



b Proving Clause Pro
essor - 3 

� Fear not, we 
an generate these theorems andpush them through ACL2 (ugly as it may be):(defthm foo (equal <lhs> <rhs>))... generates ...(defun-sk my-eqv (x y)(forall (a) (equal (my-evl x a) (my-evl y a))))(defthm foo-my-evl (my-eqv (quote <lhs>) (quote <rhs>)))
� And, all we need is to now prove is:(defthm kas-good (my-eqv (kas-rewrite trm state) trm))
� No problem....
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b Proving KAS sound 

� Overview
� Proving termination
� De�ning intermediate \models" of KAS
� Proving equivalen
e between levels of de�nition
� Verifying guards { yeeesh!
� For ea
h step, ne
essary invariants will needto be de�ned and shown to be preserved� But before we 
an prove anything, we have todeal with some issues �rst...
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b Ma
ro-expansion 

� First problem... expanding ma
ros� The de�nition of the main fun
tions in KAS use aLOT of nested ma
ros� Ma
ros are used to generate type de
larations, inlinefun
tion 
alls, data stru
tures, assertions, ...
� In parti
ular, for inlined fun
tion 
alls, I wouldlike to:� Use partial fun
tions and show that the \expanded"body is equal to unexpanded body� But, for now, I just 
heat and use a di�erent versionof the ma
ros to avoid some of the expansion
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b More Compli
ations... 

� Part of KAS is the exe
ution of user-de�nedsieve fun
tions� These sieve fun
tions 
an produ
e side e�e
ts on thelogi
 stateÆ Side e�e
ts are limited in order to ensure no impa
ton soundness� De�ne a \generi
" version of KAS with an en
apsu-lated user-sieve fun
tionÆ Unfortunately, while side e�e
ts will not e�e
t sound-ness, they 
an impa
t equivalen
e
� Intrinsi
 limitation: KAS redu
es ground termsusing evaluation� Need an axiom equating ev-fn
all-w with my-evlif fun
tion de�ned in my-evlÆWell, we a
tually need ev-fn
all-w in the logi
 �rst
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b Proving KAS terminates 

� Well, rewriting in general is not guaranteed toterminate...� Not a problem for soundness, sin
e we 
an just keep amaximum rewrite 
ounter whi
h will de
rease with everyrule appli
ationÆ Ok, not that easy, be
ause we don't want this 
ounterto de
rease when rewrite subterms, so, a lexi
al pair ofnode and 
lo
k� But, we also have a lot of re
ursion through\data stru
tures"� This would require 
arrying along a signi�
ant invari-ant for the stobjs whi
h would be a signi�
ant heada
hefor termination proofs, ex
ept...� I purposely designed all traversals to have stri
tlyde
reasing values for all \pointers"Æ Guarded by an eÆ
ient 
he
k whi
h will throw anerror dynami
ally if the pointers do not satisfy require-ment

28



b De�ning Intermediate Models - 1 

� In
rementally redu
e KAS de�nition to a sim-pler rewriter whi
h we 
ould prove easily to besound� Possible \steps" in redu
tion:
� Un-inline inlined fun
tion 
alls� Map pa
ked data stru
tures to lists stored in ls� Map pointer indexes into lists (primarily transformnodes to terms)Æ Here, we also deal with repla
ing node= with equal
ÆWe also have to prove we safely re
laim \junk" nodes
� Map bit-pa
ked data into lists (mainly sets)
� This ends the proof of the translation from\C" to LISP 29



b De�ning Intermediate Models - 2 

� We now 
ould 
ontinue the pro
ess at algo-rithmi
 level:
� Remove memo-table
� Remove undo-sta
k
� Remove 
ontextual memoization
� ... and so on ...Æ We also now must swit
h from proving equal toproving my-eqv
� Well, I de
ided to stop de�ning intermediatemodels on
e I �nished C-to-LISP translation� The C-to-LISP steps will be automati
ally de�ned,algorithmi
 intermediate models would need to be main-tained
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b Guard Veri�
ation? 

� Honestly, I have not even started on this one..� Main KAS fun
tions make liberal use of typede
larations (mainly fixnum de
lares)� My hope is that most of the invariant proof work inC-to-LISP translation steps will help dis
harge most ofthe guard proof obligations� But, this is mainly a hope, be
ause I am fully awarethat the \edge" 
ases whi
h 
ome up in proving fixnumguards 
an easily turn into signi�
ant invariant de�nitionand proof obligations� When I get to proving guards, I will probablymake modify the de�nition of some KAS fun
-tions to try and \lo
alize" the guard proofs asmu
h as possible
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b Con
lusions and Questions/Dis
ussion 

� \Development" of main KAS routines has sta-bilized� I have run out of ideas on how to further mangle the
ode� Still working on appli
ations
� I have 
ompleted about 60 per
ent of thesoundness proof work� Questions?
� First question: Rob, did you �nd any bugs?
� Final 
omment: this is still fun!
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