Overview of KAS, applications, and

proving a clause processor

ACL2 Weekly Seminar - ACES 3.116

4PM, January 27th, 2010

Rob Sumners

Advanced Micro Devices, Inc.

robert.sumners@amd.com

| Outline |

e Overview of KAS

— Motivation, design, features

e Applications

— Procedures, heuristics, examples

e Untrusted Clause Processing

— Are we there yet? No.

| Motivation - 1 |

e Most theorems are proven by simplification or
induction followed by simplification

e Most proofs about hardware /software systems
reduce to defining and proving invariants

— Proving (inductive) invariants requires considerable
case analysis

e Main Idea:

— Define an efficient term rewriter and implement pro-
cedures and heuristics as sets of rewrite rules

e iventually, we want an untrusted clause pro-
Cessor

— So, write KAS in ACL2 and prove it correct - easy.

| Start from Simple |

e Mutually recursive function clique:

e (apply-rule trm rl ctx) — apply a rewrite rule

e (try-rules trm rls ctx) — apply a list of rules

o (rewrite-if args ctx) — rewrite args of if term

e (rewrite-list 1st ctx) — rewrite a list of args

o (rewrite-args args fn ctx) — rewrite args of a term
e (rewrite-step trm ctx) — rewrite args then apply rules

e (rewrite-term trm ctx) — fixpoint of rewrite-step

e Top-level function:

(defun simple-rewrite (trm) (rewrite-term trm ()))

e ctx is a list of equalities which are currently
assumed

— Extended when the true and false branch of an if
term are rewritten

| KAS Architecture Overview |

e KAS stands for Kernel Architecture Simplifier

— KAS is best viewed as an optimized elaboration of
this simple rewriter

— Similar to ACL2, KAS uses inside-out, ordered, con-
ditional, rewriting

e How is this a simplifier?

— Implement simplification on top of KAS as instances
of a meta-process

— Transform terms (soundly) via rewrite rules

— Support efficient complex user functions to guide ap-
plication of these rewrite rules

e Interfaces with ACL2 as a trusted clause pro-
Cessor

— Loads proven rules and definitions from ACL2 world

| Two main areas of optimization |

e Terms and Memory management
— How do we represent and store terms efficiently?

— How do we manage this memory?

e Memoization and Context management
— How do we cache previous computations?

— How do we deal with changing contexts?”

| Terms and Memory management - 1 |

e Terms are main construct manipulated in KAS

and ACL2

— Use large fixnum arrays in stobjs to store nodes in
terms

— Fixnum indexes into these arrays used as pointers

e Many benefits compared to using cons, but
— It is less elegant — mitigated by use of macros

o Functions and macros also used for print/debug

— Need for garbage collection — mitigated by node pro-
motion scheme

| Terms and Memory management - 2 |

e Node Promotion Rules

e All nodes are initially “junk” and promoted if
one of the following applies:

— (a) node is a quoted constant or variable

— (b) node is in normal form in the current context

— (c) arguments are promoted and matches previous
transient node

o Use simple cache to store previous viable matches

o Incrementally grow set of promoted nodes — with
some user control

| Terms and Memory management - 3 |

e 'Transient nodes
— are not uniquely constructed
— have minimal storage per node

— are reclaimed efficiently by “stack” deallocation

e Promoted nodes
— are constructed uniquely

— include storage for memoized computations

— are never reclaimed and never demoted

| Memoization and Context management - 1 |

e Need to cache rewrite results to avoid repeated
computation

— Every promoted node includes a repnode field point-
ing to another node

— An invariant of KAS execution is that a node is always
equivalent to its repnode assuming the current context

o When an equality is assumed from if test, a repnode
is created

e When KAS rewrites a node, it first consults
repnode as replacement

— repnodes are updated to resulting normal-forms when
rewriting completes

e Obviously we need a system for undoing repn-
ode assignments when we pop contexts

10

| Memoization and Context management - 2 |

e Livery repnode is tagged with a context vector

— A context vector i1s a subset of the current context
encoded as a bitvector

— Invariant is every node is equivalent to its repnode
assuming its context vector

e Lvery function in main rewrite loop returns
context vector along with rewrite result

e An example to demonstrate context manage-
ment of repnodes:

(if (=ab) (if (b c) (= (f a) (f ¢))
(= (f a) (f b)))
(= (f a) (f a)))

e repnode is updated or undone for (f a) to
match equality in each leaf

11

| Several Additional Optimizations |

e Avoiding Lisp Execution Overhead

— fixnums, stobjs, and more fixnums — no consing in

main loop

— inlining and tail recursion to avoid overhead of func-

tion calls

e Specialized Data Structures

— undo stack which is a stack of lists of “undos” to be
performed when popping the context

e Additional Memoization

— KAS tags nodes which have been rewritten

12

| User Control and Interfacing - 1 |

e KAS imports conditional rewrite rules proven
as ACL2 theorems

e Fine-grained rewrite control supported through
sieve operator

— Sieves can access ACL2 state and KAS logic stob]
— Sieves can access and update user stobj
— Sieves can determine if a rule is applied or not

— Sieves return a list of updates to the KAS logic stob]

o Updates are restricted to have no effect on soundness

of KAS

13

| User Control and Interfacing - 2 |

e The current list of sieve function updates:

operation
set-var-bound
set-rule-sieves
set-rule-enabled
set-rule-ctr
set—-node-step
set-node-1imit
change-rule-order
set-rule-traced
set-user-mark

side effect

bind a free variable in a rewrite
modify the filters attached to a rule
enable or disable a rewrite rule
modify counter for number of rule apps
set node allocation incremental step
set node allocation limits

change the order of rewrite rules
enable or disable rule trace output
set or clear a boolean mark on a node

14

| Implemented, Tested, Rescinded |

e Infinite Rewriting
— Only support unconditional rewriting

— Not enough benefit for complications in contexts

e Targeted rewriting
— Only rewrite the subterms which change in a context

— Required maintaining backpointers

e Allow user to rewrite everything

— Use special operators for contexts, hypothesis, etc.

e Contextual rewriting

— Fairly easy to avoid and it complicated proot effort

15

| Simulating ACL2 simplification |

e Type prescription and Forward chaining

— Contextual memoization will retain computed facts
needed to relieve hypothesis of rules

e Congruence rewriting

— KAS only supports equal, but other equivalences can
be “mapped” to equal through normalizing functions
(defthm set=-to-equal (equal (set= x y) (= (n-s x) (n-s y))))

e Linear Arithmetic — a bit more involved
— Define rules to normalize linear terms placing
operands in term order

— Define rule to selectively combine and factor out linear
terms with matching first operands

— Can be used for other “linear” operators such as set
operations

e Other examples: BDDs, Lambda rewriting
(mostly), ...

16

| Example: Case Splitting |

e Introduce identity functions used as stages in
meta-process

(defun prv (x) x) (defun prv2 (x) x) (defun prv3 (x) x)

e Prove rewrite rules to sequence term transi-
tions 1n meta-process

— Use sieves to define complex functions or functions
outside of term transformation

— case-split selects a term based on weighted occur-
rence I if tests

(defthm (equal (prv3 t) t))

(defthm (equal (prv2 (if x y z)) (if x y z)))
(defthm (equal (prv2 (if x t (hide z))) (if x t (prv z)))
(defthm (equal (prv2 (if x (prv3 y) z))

(prv2 (if x (prv y) z))))

(defthm (equal (prv x) x))
(defthm (implies (sieve (case-split C))
(equal (prv x)
(prv2 (if C (prv3 x) (hide x))))))

17

| Example: Failure Reporting |

e A different meta-process for reporting a failing
case as a list of predicates

— Designed to work with case splitting process using
rfl and gfl identity functions

(defthm (implies (sieve (report-to-cw leaf))
(equal (rfl leaf x) x)))
(defthm (implies (sieve (report-to-cw tst))
(equal (rfl (if tst tbr fbr) x)
(rfl tbr x))))
(defthm (implies (and (sieve (non-nilp tbr))
(sieve (report-to-cw (not tst))))
(equal (rfl (if tst tbr fbr) x)
(rfl fbr x))))

(defthm (equal (gfl x) (fail (rfl x x))))
(defthm (equal (gfl t) t))

e Standard defthmk macro takes a term « and
creates a call to KAS with (gfl (prv «))

18

| Application: Proving Invariants - 1 |

e Start with a stuttering refinement for a simple
pipeline model

— Stuttering refinement between ma level and isa level

— Example modified from DLX pipeline by Mano-
lios,Srinivasan

e Predicate defining a matched ma state:
(defun ma-matches-isa (x)
(if (commit x)
(equal (rep (ma x)) (isa (rep x)))

(and (equal (rep (ma x)) (rep x))
(< (rank (ma x)) (rank x)))))

— rep maps ma state to isa state

— rank 1s well-founded measure on ma states

— commit defines when ma will make isa visible step

19

| Application: Proving Invariants - 2 |

e [dea from Manolios,Srinivasan: let the ma steps
build mvariant

— Leads to brutal case explosion in a few steps

(defun maX4 (m) (ma (ma (ma (ma (flush m))))))
(defun maX5 (m) (ma (maX4 m)))
(defun maX6 (m) (ma (maX5 m)))
(defun maX7 (m) (ma (maX6 m)))
(defun maX8 (m) (ma (maX7 m)))

(defthmk maX4-proof (ma-matches-isa (maX4 m)))
(defthmk maX5-proof (ma-matches-isa (maX5 m)))
(defthmk maX6-proof (ma-matches-isa (maX6 m)))
(defthmk maX7-proof (ma-matches-isa (maX7 m)))
(defthmk maX8-proof (ma-matches-isa (maX8 m)))

e ACL2 blows up on maX5, KAS takes a minute
for maX8, but how about proof from arbitrary
state:

(defthmk ma-proof (ma-matches-isa (ma (ma (ma (ma x))))))

20

| Application: Proving Invariants - 3 |

e Eixtend this basic idea and include finite state
search

— Assume domain of rep is finite list of booleans

o Introduce Skolem constants to model arbitrary data,
commands, identifiers, etc.

— Define next* as the run to commat function:

(defun next* (s)
(declare (xargs :measure (rank s)))
(if (commit s) (next s) (next* (next s))))

e [ixplore the states starting with (rep (init))
and transitioning with (rep (next* s))

— Use KAS to rewrite (rep (next* s)) with heuris-
tics to control expansion of next function integrated
with case splitting

— Iterate until you reach a fixpoint or find a state which
invalidates the invarint (inv (rep s)) which you are
trying to prove

21

| Proving Clause Processor - 1 |

e We would like to prove a clause-processor
rule for kernel-simplify

(defun kernel-simplify (cl hint state 1ls us)
(declare (xargs :stobjs state 1ls us))
(mv-let (erp term ttree state 1ls us)

(kern-simplify-main cl hint 1s us state)
(declare (ignore ttree))
(mv erp (list (list term)) state 1ls us)))

(defthm correctness-of-kernel-simplify
(implies (and (pseudo-term-listp cl)
(alistp a)
(my-evl
(conjoin-clauses
(clauses-result (kernel-simplify cl hint st 1s us))) a)))
(my-evl (disjoin cl) a)))

e Where my-evl is an evaluator over a usetul
set of functions for a given problem

— If your application of KAS requires new functions,
then a new evaluator will also be needed

e But, we need an invariant to persist on logic
state stobj 1s, so no dice...

22

| Proving Clause Processor - 2 |

e Ok, we can create local-stobjs and ensure the
proper invariants are maintained in all calls

(defthm correctness-of-kernel-simplify
(implies (and (pseudo-term-listp cl)
(alistp a)
(my-evl
(conjoin-clauses
(clauses-result (kernel-simplify cl hint st))) a)))
(my-evl (disjoin cl) a)))

e Another potential problem. KAS uses the-
orems from the current world and in order to
prove this result...

— ...we will need theorems relating these theorems to
my—-evl computation

23

| Proving Clause Processor - 3 |

e Fear not, we can generate these theorems and
push them through ACL2 (ugly as it may be):

(defthm foo (equal <lhs> <rhs>))
. generates ...

(defun-sk my-eqv (x y)
(forall (a) (equal (my-evl x a) (my-evl y a))))

(defthm foo-my-evl (my-eqv (quote <lhs>) (quote <rhs>)))

e And, all we need is to now prove is:

(defthm kas-good (my-eqv (kas-rewrite trm state) trm))

e No problem....

24

| Proving KAS sound |

e Overview
— Proving termination
— Defining intermediate “models” of KAS
— Proving equivalence between levels of definition

— Verifying guards — yeeesh!

e For each step, necessary invariants will need
to be defined and shown to be preserved

e But before we can prove anything, we have to
deal with some issues first...

25

| Macro-expansion |

e [irst problem... expanding macros
— The definition of the main functions in KAS use a

LOT of nested macros

— Macros are used to generate type declarations, inline
function calls, data structures, assertions, ...

e In particular, for inlined function calls, I would
like to:

— Use partial functions and show that the “expanded”
body is equal to unexpanded body

— But, for now, I just cheat and use a different version
of the macros to avoid some of the expansion

26

| More Complications... |

e Part of KAS is the execution of user-defined
sieve functions

— These sieve functions can produce side effects on the
logic state

o Side effects are limited in order to ensure no impact
on soundness

— Define a “generic” version of KAS with an encapsu-
lated user-sieve function

o Unfortunately, while side effects will not effect sound-
ness, they can impact equivalence

e Intrinsic limitation: KAS reduces ground terms
using evaluation

— Need an axiom equating ev-fncall-w with my-evl
if function defined in my-evl

o Well, we actually need ev-fncall-win the logic first

27

| Proving KAS terminates |

e Well, rewriting in general is not guaranteed to
terminate...

— Not a problem for soundness, since we can just keep a
maximum rewrite counter which will decrease with every
rule application

o Ok, not that easy, because we don’t want this counter
to decrease when rewrite subterms, so, a lexical pair of
node and clock

e But, we also have a lot of recursion through
“data structures”

— This would require carrying along a significant invari-
ant for the stobjs which would be a significant headache
for termination proofs, except...

— I purposely designed all traversals to have strictly

decreasing values for all “pointers”

o Guarded by an efficient check which will throw an
error dynamically if the pointers do not satisty require-
ment

28

| Defining Intermediate Models - 1 |

e Incrementally reduce KAS definition to a sim-
pler rewriter which we could prove easily to be
sound

e Possible “steps” in reduction:

— Un-inline inlined function calls

— Map packed data structures to lists stored in 1s

— Map pointer indexes into lists (primarily transform
nodes to terms)

o Here, we also deal with replacing node= with equal
o We also have to prove we safely reclaim “junk” nodes

— Map bit-packed data into lists (mainly sets)

e This ends the proof of the translation from
“C” to LISP

29

| Defining Intermediate Models - 2 |

e We now could continue the process at algo-
rithmic level:

— Remove memo-table
— Remove undo-stack
— Remove contextual memoization

— ... and so on ...

o We also now must switch from proving equal to
proving my-eqv

e Well, I decided to stop defining intermediate
models once I finished C-to-LISP translation

— The C-to-LISP steps will be automatically defined,
algorithmic intermediate models would need to be main-
tained

30

| Guard Verification? |

e Honestly, I have not even started on this one..

e Main KAS functions make liberal use of type
declarations (mainly fixnum declares)

— My hope is that most of the invariant proof work in
C-to-LISP translation steps will help discharge most of
the guard proof obligations

— But, this is mainly a hope, because I am fully aware
that the “edge” cases which come up in proving fixnum
guards can easily turn into significant invariant definition
and proof obligations

e When I get to proving guards, I will probably
make modify the definition of some KAS func-
tions to try and “localize” the guard proofs as
much as possible

31

| Conclusions and Questions/Discussion |

e “Development” of main KAS routines has sta-
bilized

— I have run out of ideas on how to further mangle the
code

— Still working on applications

e | have completed about 60 percent of the
soundness proof work

e (Questions’

— First question: Rob, did you find any bugs?

e ['inal comment: this is still fun!

32

