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The Idea

Make it easy for the user to declare and

reason about a large number of

list-structured datatypes

This is a work in progress
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Aside

This work is morphing from a “datatype

manager” to a “rule manager” for ACL2.
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Type-Set

ACL2 keeps track of the type of a value by

associating a bit-mask with it

This mask is called a type set

Each bit represents a set of ACL2 objects

and the mask represents the set obtained

by unioning together those sets
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ACL2 has fourteen disjoint primitive types

zero

positive integers

positive ratio

negative integers

negative ratio

complex rational
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nil

t

other symbols

proper cons

improper cons

string

character

other
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Supoose x is known to be either a natural

number or nil.
(x . #B00000001000011)

| ||

| |zero

| |

| positive integer

|

nil

Consider (if x α β)
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Type sets go all the way back to the

earliest Boyer-Moore prover and have been

extraordinarily effective at keeping track of

what we know.
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Suppose x is known to be an integer and y

is known to be a positive rational.

(if (equal x y)

(and (integerp y) (< 0 y))

(symbolp x))
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Pros and Cons

Type-sets are great for encoding

implications (and other propositional

relations) between types

(IMPLIES (NATP X) (RATIONALP X))

(IMPLIES (AND (TRUE-LISTP X)

(NOT (CONSP X)))

(SYMBOLP X))
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(IMPLIES (BOOLEANP X) (NOT (STRINGP X)))

Unfortunately, type-sets don’t code any

structural properties of lists (other than

true-listp)
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Basic Approach

Let’s keep type-set but use lemmas to

extend the behavior of the system for

composite types

My current work is entirely focused on

propositional relationships between

structural types
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Related ACL2 Work

The ACL2 Sedan supports

(defdata foo (oneof nil (cons all foo)))

(defdata

(sexpr

(oneof symbol

(cons symbol sexpr-list)))

(sexpr-list

(oneof nil

(cons sexpr sexpr-list))))

13



(defunc read-file (fname dir)

:input-contract (and (stringp fname)

(dirp dir))

:output-contract (filep (read-file fname dir))

...)
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The Language

<litconst> := T

| NIL

| <keyword∗>

| <number>

| <string>

| <char>

∗ Note: All keywords except :OR, :AND,

:NOT, and :REC.
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<type> := <litconst>

| <recog>

| (QUOTE <any>)

| ?

| (<type> . <type>)

| (:AND <type> ... <type>)

| (:OR <type> ... <type>)

| (:NOT <type>)

| (:REC <type>)

| (:REC <name> <type>)

| *
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Examples

Booleans:

(:OR T NIL)

One of the symbols MON, WED, or FRI:

(:OR ’MON ’WED ’FRI)

True lists:

(:REC (:OR NIL (? . *)))
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True list of NATPs:

(:REC (:OR NIL (NATP . *)))

Same as above, except named:

(:REC NAT-LISTP

(:OR NIL (NATP . *)))

(:REC NAT-LISTP

(:OR NIL (NATP . NAT-LISTP)))
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Three field record:

(STRINGP BIT32P (:OR T NIL ’X))
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Deficiency

Right now I do not support constructors or

accessors!

Reasons:

(1) I am focused on the relationships

between types

(2) Many Lisp programs are not disciplined

in their use of constructors and accessors
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Demo

This work is morphing from a “datatype

manager” to a “rule manager” for ACL2.

This will become clearer toward the end of

the demo.
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