
A Datatype Manager for ACL2

—

A Work in Progress

J Strother Moore
February, 2011

1

The Idea

Make it easy for the user to declare and

reason about a large number of

list-structured datatypes

This is a work in progress

2

Aside

This work is morphing from a “datatype

manager” to a “rule manager” for ACL2.

3

Type-Set

ACL2 keeps track of the type of a value by

associating a bit-mask with it

This mask is called a type set

Each bit represents a set of ACL2 objects

and the mask represents the set obtained

by unioning together those sets

4

ACL2 has fourteen disjoint primitive types

zero

positive integers

positive ratio

negative integers

negative ratio

complex rational

5

nil

t

other symbols

proper cons

improper cons

string

character

other

6

Supoose x is known to be either a natural

number or nil.
(x . #B00000001000011)

| ||

| |zero

| |

| positive integer

|

nil

Consider (if x α β)

7

Type sets go all the way back to the

earliest Boyer-Moore prover and have been

extraordinarily effective at keeping track of

what we know.

8

Suppose x is known to be an integer and y

is known to be a positive rational.

(if (equal x y)

(and (integerp y) (< 0 y))

(symbolp x))

9

Pros and Cons

Type-sets are great for encoding

implications (and other propositional

relations) between types

(IMPLIES (NATP X) (RATIONALP X))

(IMPLIES (AND (TRUE-LISTP X)

(NOT (CONSP X)))

(SYMBOLP X))

10

(IMPLIES (BOOLEANP X) (NOT (STRINGP X)))

Unfortunately, type-sets don’t code any

structural properties of lists (other than

true-listp)

11

Basic Approach

Let’s keep type-set but use lemmas to

extend the behavior of the system for

composite types

My current work is entirely focused on

propositional relationships between

structural types

12

Related ACL2 Work

The ACL2 Sedan supports

(defdata foo (oneof nil (cons all foo)))

(defdata

(sexpr

(oneof symbol

(cons symbol sexpr-list)))

(sexpr-list

(oneof nil

(cons sexpr sexpr-list))))

13

(defunc read-file (fname dir)

:input-contract (and (stringp fname)

(dirp dir))

:output-contract (filep (read-file fname dir))

...)

14

The Language

<litconst> := T

| NIL

| <keyword∗>

| <number>

| <string>

| <char>

∗ Note: All keywords except :OR, :AND,

:NOT, and :REC.

15

<type> := <litconst>

| <recog>

| (QUOTE <any>)

| ?

| (<type> . <type>)

| (:AND <type> ... <type>)

| (:OR <type> ... <type>)

| (:NOT <type>)

| (:REC <type>)

| (:REC <name> <type>)

| *

16

Examples

Booleans:

(:OR T NIL)

One of the symbols MON, WED, or FRI:

(:OR ’MON ’WED ’FRI)

True lists:

(:REC (:OR NIL (? . *)))

17

True list of NATPs:

(:REC (:OR NIL (NATP . *)))

Same as above, except named:

(:REC NAT-LISTP

(:OR NIL (NATP . *)))

(:REC NAT-LISTP

(:OR NIL (NATP . NAT-LISTP)))

18

Three field record:

(STRINGP BIT32P (:OR T NIL ’X))

19

Deficiency

Right now I do not support constructors or

accessors!

Reasons:

(1) I am focused on the relationships

between types

(2) Many Lisp programs are not disciplined

in their use of constructors and accessors
20

Demo

This work is morphing from a “datatype

manager” to a “rule manager” for ACL2.

This will become clearer toward the end of

the demo.

21

