
Reasoning About Y86
Machine Code

J Strother Moore
Department of Computer Science

University of Texas at Austin

1



What is Y86?

a simple machine code model distantly

related to X86

introduced by Randal E. Bryant and David

R. O’Hallaron in Computer Systems, A

Programmer’s Perspective

ACL2 model (including an assembler)

developed by Warren Hunt

2



Demo 1

. . . in which I show some example Y86

assembly code programs, a Y86 state, and

give a very brief tour of the definition.

3



Controlling Complexity

Greve’s wormhole abstraction implemented

with effects

iY86, an intensional subset of Y86

re-usable generic theorems

macros for reasoning about straight code

sequences, loops, and procedure calls

4



The Effects Relation

(-=> s (effects (:eax 5)

(:edx (+ 1 (g :eax s)))))

means

“the important aspects of state s are that

:eax is 5 and :edx is 1 + :eax”

Formally

(defun -=> (s lst) (equal s (s* lst s)))

(s* (list (list key val) ...) s)

= (s key val (s* ... s))

5



Thus, if we know

(-=> (y86 s n) (effects . . .))

then we can replace all occurrences of

(y86 s n) by

(s* (effects . . .)
(y86 s n))

6



Thus, if we know

(-=> (y86 s n) (effects . . .))

then we can replace all occurrences of

(y86 s n) by

(s* (effects . . .)
(y86 s n))

7



Thus, if we know

(-=> (y86 s n) (effects . . .))

then we can replace all occurrences of

(y86 s n) by

(s* (effects . . .)
(etc s n))

After this transformation, all we know

about (y86 s n) is its effects.

8



Proving

(-=> (y86 s n) (effects . . .))

can be done by symbolically running y86

and then just checking that the important

effects are as listed. Everything else “is

what it is.”

(That’s Greve’s characterization of

“wormhole abstraction.”)

9



Intentional Effects

Y86 collects lots of extensional data (e.g.,

cache behavior, etc.). This data is

irrelevant to computations.

If the effects of a computation are purely

intentional, Y86 can be replaced by the

simpler iY86.

10



Demo 2

. . . in which I show the relation between

the two machines.

11



Sequential Code

To deal with long code sequences, I snorkel

the clock.

(y86 s 5007)

=

(y86 (y86 s 200) 4807)

12



Sequential Code

Recall big1, iterates 1000 times,

incrementing mem[8+%esp]:

(irmovl 50000 %esp) ;;; %esp <- 50000

(irmovl 1000 %ebx) ;;; %ebx <- 1000

(irmovl 1 %ecx) ;;; %ecx <- 1

(irmovl 0 %edx)

(subl %ecx %edx) ;;; %edx <- (%edx - 1)

big1-loop
. . .

13



Sequential Code

Recall big1, iterates 1000 times,

increments mem[8+%esp]:

. . .

big1-loop

(mrmovl 8(%esp) %eax)

(addl %ecx %eax)

(rmmovl %eax 8(%esp)) ;;; mem[50008] <- 1+mem[50008]

(addl %edx %ebx) ;;; %ebx <- %ebx - 1

(jg big1-loop) ;;; jump to big1-loop if %ebx > 0

big1-halt
(halt)

14



Demo 3

. . . in which I show how we can reason

about long “straight line code” with a

special macro by proving big1’s effects are

(effects (:mem (append

(xtr *prog-lo* *prog-hi* (g :mem s))

(list (list 50008 (+ 1000 (r32 50008 (g
(:eip *big1-halt*))

by running through the loop 1000 times.

15



Procedure Call/Return

I verify procedure call/return with standard

sequential code techniques: just simulate

through the call/return prefix and postfix

(which manage the stack, saved registers,

and pc).

16



Loops

But to verify loops I have developed a

special macro based on generic theorems.

The key idea is to use sequential code

techniques to verify that the loop body has

certain effects and then relate the iterated

loop effects to the single-pass effects

without dealing with code.

17



The Generic Theorems

(hyp s) - the hypothesis of the desired

theorem – except you should omit

(y86-guard s) because that is given to

you “for free.” The hyp should insure that

:eip is at the top of the loop.

18



(beta s) - the effects of executing the

loop to completion – should specify an

:eip outside the loop.

(test s) - true if we are to exit the loop;

however, it is assumed that we will still

make one pass through it on our way to

the exit because that is so common on the

y86 (the code generally contains a

conditional-jump at the bottom of a loop).

19



(k s) - the number of steps in the next

pass through the loop. Often this is a

constant but might be dependent on data

in s.

(m s) - a measure that decreases every

time we go through the loop. You may

assume both the guard and hyp when you

write m. Thus, a good m might be just (g

:edx s).

20



(alpha s) - important effects of one pass

through the loop; may leave :eip back at

the top or outside the loop.

21



Demo 4

. . . in which we explore the constraints on

these functions and what those constraints

allow us to prove about loops.

22



A Callable Procedure with a Loop

The iterative program sums the

numbers from %eax down to 0.

(pushl %ebp) ;;; save registers

(rrmovl %esp %ebp) ;;; and stack

(pushl %eax)

(pushl %ebx)

(pushl %ecx)

(pushl %edx)

23



iterative-start

(xorl %ebx %ebx) ;;; %ebx <- 0

(irmovl -1 %ecx) ;;; %ecx <- -1

iterative-loop

(addl %eax %ebx) ;;; %ebx <- %eax + %ebx

(addl %ecx %eax) ;;; %eax <- %eax - 1

(jg iterative-loop) ;;; jump iterative-loop [if n>0]

iterative-finish

(rmmovl %ebx 100(%edi));;; mem[%edi+100] <- %ebx

24



iterative-exit ;;; restore registers

(mrmovl -16(%ebp) %edx) ;;; and stack

(mrmovl -12(%ebp) %ecx)

(mrmovl -8(%ebp) %ebx)

(mrmovl -4(%ebp) %eax)

(rrmovl %ebp %esp)

(popl %ebp)

(ret)

25



Demo 5

. . . in which we demonstrate the macro for

reasoning about loops and then use our

sequential macro to reason about

procedure call/return through a loop.

26



Recursive Procedures

(rhyp s) - the pre-condition of called

routine (given a well-formed state s); this

must include the requirements on available

stack space and that the next instruction is

a call of the routine in question!

27



(rbeta s) - the important effects of

executing the routine to completion,

including that eip has been advanced by 5!

(rtest s) - true if we are in the base case

(rkb s) - the number of steps from the

call, through the base case, to the ret

(rkc s) - the number of steps from the

outer call to the inner call.

(rkd s) - the number of steps from the

28



inner recursive call to the ret. Note that it

is a function of the input state, not the

state after the recursive call.

(rm s) - a measure that decreases every

we see a call. You may assume both the

guard and rhyp when you write rm. Thus,

a good rm might be just (g :eax s).

29



Demo 6

. . . in which I show what the constraints on

these functions are and what can be

derived from them.

30



Recursive Sum

(pushl %ebp) ;;; Standard entry

(rrmovl %esp %ebp)

(pushl %eax)

(pushl %ebx)

(pushl %ecx)

(pushl %edx)

recursive-body

(xorl %ebx %ebx) ;;; %ebx <- 0

(addl %ebx %eax) ;;; %eax <- %eax + 0 (set flags)

(jg recursive-pre-step)

31



recursive-base

(rmmovl %ebx 100(%edi));;; mem[%edi+100] <- 0

(jmp recursive-exit)

recursive-pre-step

(pushl %eax) ;;; save local

(irmovl -1 %ebx)

(addl %ebx %eax) ;;; %eax <- %eax-1

recursive-call

(call recursive) ;;; mem[%edi+100] <- recursive(‘‘%e

32



recursive-post-step

(popl %eax) ;;; restore local

(mrmovl 100(%edi) %ebx);;; get result

(addl %eax %ebx) ;;; %ebx=%eax+%ebx

(rmmovl %ebx 100(%edi));;; mem[%edi+100] <- answer

recursive-exit

(mrmovl -16(%ebp) %edx);;; Standard exit

(mrmovl -12(%ebp) %ecx)

(mrmovl -8(%ebp) %ebx)

(mrmovl -4(%ebp) %eax)

(rrmovl %ebp %esp)

(popl %ebp)

(ret)

33



Demo 7

. . . in which I demonstrate the macro for

proving recursive procedures.

34


