
Using Quantification in
ACL2
Nathan Wetzler

nwetzler@cs.utexas.edu

University of Texas, Austin
March 25, 2012

1Monday, April 2, 12

Introduction

• ACL2 is described as a “quantifier-free” first-order
logic of recursive functions

• David Greve: “[quantification in ACL2 is a]
second-class citizen in a first-order world.”

• ACL2 does provide a construct that mimics
quantification, but automated reasoning is not
supported.

2Monday, April 2, 12

Outline

• Quantification (Preliminaries)

• Quantification in ACL2

• Automated Reasoning for Quantification in ACL2

3Monday, April 2, 12

Quantification in Logic

• Quantifiers help distinguish first-order logic from propositional logic

• Quantification occurs over a “domain of discourse” or “universe”

• Universal quantification

• Traditional notation: ∀ x∈D P(x)

• Variants: ∀x P(x) (forall x : (P x))

• For all elements x in domain D, P is true of x

• Existential quantification

• Traditional notation: ∃ x∈D P(x)

• Variants: ∃x P(x) (exists x : (P x))

• There exists an element x in domain D such that P is true of x.

4Monday, April 2, 12

Proof Strategies

• Universal (forall) as hypothesis

• Universal (forall) as conclusion

• Existential (exists) as hypothesis

• Existential (exists) as conclusion

5Monday, April 2, 12

Proof Strategies

• Universal (forall) as hypothesis

Suppose we want to prove:
(implies (forall x (P x))
 (Q y))

Then we can choose some object "a" and add (P a) to our
hypotheses.
(implies (and (forall x (P x))
 (P a))
 (Q y))

6Monday, April 2, 12

Proof Strategies

• Universal (forall) as conclusion

Suppose we want to prove:
(implies (Q y)
 (forall x (P x)))

Then we must prove (P a) for an arbitrary "a".
(implies (Q y)
 (P a))

7Monday, April 2, 12

Proof Strategies

• Existential (exists) as hypothesis

Suppose we want to prove:
(implies (exists x (P x))
 (Q y))

Then we can add (P a) for an arbitrary "a" to our
hypotheses.
(implies (and (exists x (P x))
 (P a))
 (Q y))

8Monday, April 2, 12

Proof Strategies

• Existential (exists) as conclusion

Suppose we want to prove:
(implies (Q y)
 (exists x (P x)))

Then must choose some object "a" and prove:
(implies (Q y)
 (P a))

9Monday, April 2, 12

Definition:
(subset x y) =
(forall e : (member e x)
 --> (member e y))

Prove:
(subset x y)
& (subset y z)
--> (subset x z)

<--> definition of subset

(subset x y)
& (subset y z)
--> (forall e : (member e x)
 --> (member e z))

forall conclusion, e is not free

(subset x y)
& (subset y z)
--> ((member e x) --> (member e z))

<--> promote

(subset x y)
& (subset y z)
& (member e x)
--> (member e z)

<--> definition of subset

(forall e : (member e x)
 --> (member e y))
& (forall e : (member e y)
 --> (member e z))
& (member e x)
--> (member e z)

forall hypothesis twice, e/e

(member e x) --> (member e y)
& (member e y) --> (member e z)
& (member e x)
--> (member e z)

<--> forward chaining twice, hypothesis

true

10Monday, April 2, 12

Why Use Quantifiers in
ACL2?

Pros:
• Sometimes we can avoid

writing a complicated
witnessing function
• Makes a cleaner

specification that
resembles classical logic
• Can help modularize

proof by hiding
witnessing function

Cons:
• Limited reasoning

support
• May still have to write

witnessing function
• Usually do the same

thing with recursion
• Non-executability

11Monday, April 2, 12

Quantification in ACL2
• Syntax of ACL2 does not allow the use of quantifiers

• Quantification in ACL2 can be achieved through the
construct defun-sk

• Syntax of defun-sk
(defun-sk function-name (formal-parameters)
 (quantifier (quantified-variables) body))

• quantifier must be either forall or exists

• All variables in body must be either formal parameters
or quantified variables (no free variables).

• A nice naming convention is to use the prefix forall-
or exists-

12Monday, April 2, 12

Example

ACL2 defun-sk:
(defun-sk forall-subset (x y)
 (forall e (implies (member e x)
 (member e y))))

ACL2 theorem:
(defthm forall-subset-transitive
 (implies (and (forall-subset x y)
 (forall-subset y z))
 (forall-subset x z)))

Logic definition:
(subset x y) =
(forall e : (member e x)
 --> (member e y))

Logic theorem:
(subset x y)
& (subset y z)
--> (subset x z)

13Monday, April 2, 12

defun-sk expansion

• defun-sk is implemented as a macro

• This macro translates to an encapsulate that does
three* things:

• defchoose event to establish a witness function

• defun event to establish predicate

• defthm event to establish quantification
theorem

14Monday, April 2, 12

defun-sk expansion
(defun-sk forall-subset (x y)
 (forall e (implies (member e x)
 (member e y))))

Translates to:

(encapsulate
 ((forall-subset-witness (x y) e))
 (local (in-theory '(implies)))
 (local
 (defchoose forall-subset-witness (e) (x y)
 (not (implies (member e x) (member e y)))))
 (defun-nx forall-subset (x y)
 (declare (xargs :non-executable t))
 (let ((e (forall-subset-witness x y)))
 (implies (member e x) (member e y))))
 (in-theory (disable (forall-subset)))
 (defthm forall-subset-necc
 (implies (not (implies (member e x) (member e y)))
 (not (forall-subset x y)))
 :hints (("goal" :use (forall-subset-witness forall-subset)
 :in-theory (theory 'minimal-theory)))))

15Monday, April 2, 12

Quantification Predicate

• Second event in defun-sk macro is a definition:
(defun-nx function-name (formal-parameters)
 (let ((quantification-variables
 (witness-function formal-parameters)))
 body))

• Best way to think about the occurrence of this
function in a proof is that it represents the
quantified formula.

• The defun-nx is simply a non-executable defun

16Monday, April 2, 12

Quantification Theorem

• Third event in defun-sk macro is a theorem,
referred to as the “quantification theorem’’:

(defthm function-name-suff ;existential
 (implies body
 (function-name formal-parameters)))

(defthm function-name-necc ;universal
 (implies (not body)
 (not (function-name formal-parameters))))

• The best way to think about this theorem is that it
can be used to supply a witness in a proof.

17Monday, April 2, 12

Quantifier Proof in ACL2
(defun-sk forall-subset (x y)
 (forall e (implies (member e x)
 (member e y))))

(defthm forall-subset-transitive
 (implies (and (forall-subset x y)
 (forall-subset y z))
 (forall-subset x z))
 :hints (("Goal"
 :use ((:instance (:definition forall-subset)
 (x x)
 (y z))
 (:instance forall-subset-necc
 (x x)
 (y y)
 (e (forall-subset-witness x z)))
 (:instance forall-subset-necc
 (x y)
 (y z)
 (e (forall-subset-witness x z)))))))

18Monday, April 2, 12

Quantification Versus
Recursion

• Sometimes quantification may not be necessary:
(defun-sk forall-subset (x y)
 (forall e (implies (member e x)
 (member e y))))

(defun subset-recursive (x y)
 (if (atom x)
 t
 (if (member (car x) y)
 (subset-recursive (cdr x) y)
 nil)))

(defthm subset-equal
 (equal (forall-subset x y)
 (subset-recursive x y)))

19Monday, April 2, 12

Why Use Quantifiers in
ACL2?

Pros:
• Sometimes we can avoid

writing a complicated
witnessing function
• Makes a cleaner

specification that
resembles classical logic
• Can help modularize

proof by hiding
witnessing function

Cons:
• Limited reasoning

support
• May still have to write

witnessing function
• Usually do the same

thing with recursion
• Non-executability

20Monday, April 2, 12

Automation

• David Greve worked on improving quantification
reasoning in ACL2

• Paper: “Automated reasoning with quantified
formulae” (2009)

• Work is distributed in the ACL2 books repository:
“books/coi/quantification/quantification.lisp”

21Monday, April 2, 12

Motivation

• Greve was familiar with two tools from PVS called
“skosimp” and “inst?”

• “skosimp” would identify quantified formulae and
skolemize them (remove the quantifier and
replace the quantified variable with a free variable)

• “inst?” would identify quantified formulae and
attempt to instantiate them.

22Monday, April 2, 12

Usage

• Include the quantification book by adding:

• Replace defun-sk with def::un-sk. Same syntax.

• Two computed hints: (quant::skosimp) and
(quant::inst?)

• Apply hints to theorems by adding:

:hints ((quant::skosimp) (quant::inst?))

(include-book “coi/quantification/quantification” :dir :system)

23Monday, April 2, 12

Quantification Proof

(include-book "coi/quantification/quantification" :dir :system)

(def::un-sk forall-subset (x y)
 (forall e (implies (member e x)
 (member e y))))

(defthm forall-subset-transitive
 (implies (and (forall-subset x y)
 (forall-subset y z))
 (forall-subset x z))
 :hints ((quant::skosimp) (quant::inst?)))

24Monday, April 2, 12

Identify
Quantified
Formula

Instantiation Skolemization

Determine Polarity

forall in hypothesis
or exists in conclusion

exists in hypothesis
or forall in conclusion

25Monday, April 2, 12

Identification

• Some of the information about quantified formulae is not
available at proof time.

• To solve this, Greve defined def::un-sk which is a wrapper for
defun-sk but also creates an ACL2 table with all the necessary
information

• Includes quantifier type, quantified variables, formal
variables, lemma names, witness name, body, etc.

• With a stored list of all quantified formulae that might
appear, we can search the goal for instances for the quantified
formulae (which will appear as the witness function).

26Monday, April 2, 12

Instantiation

• After identifying a quantified formula that needs
instantiation, we must search for subterms of the
quantified formula in the goal

• If a match is found (that binds the formal
parameters and quantified variables), then the
quantification theorem is called with the
appropriate binding

• Instantiations are done one at a time so that the
prover is not overwhelmed

27Monday, April 2, 12

Skolemization

• Once we identify a quantified formula that needs
skolemization, we need to generalize by creating a
new variable representing the quantified formula.

• First, the witness term is flagged for generalization
by wrapping it in (gensym::generalize ...)

• Second, a clause processor recognizes instances of
the wrapper and replaces them with a new
symbol.

28Monday, April 2, 12

Why Use Greve’s Work?

Pros:
• Works very nicely on

simple examples
• Very good with

automatic instantiation
when instance can be
pattern-matched

Cons:
• Performs poorly with

nested quantifiers
• Does not work when

pattern matching is not
possible
• Potential problem when

the order of
simplification matters

29Monday, April 2, 12

Evolution of Proofs

• Let’s take a quick look again at the evolution of
our subset proof

30Monday, April 2, 12

Definition:
(subset x y) =
(forall e : (member e x)
 --> (member e y))

Prove:
(subset x y)
& (subset y z)
--> (subset x z)

<--> definition of subset

(subset x y)
& (subset y z)
--> (forall e : (member e x)
 --> (member e z))

forall conclusion, e is not free

(subset x y)
& (subset y z)
--> ((member e x) --> (member e z))

<--> promote

(subset x y)
& (subset y z)
& (member e x)
--> (member e z)

<--> definition of subset

(forall e : (member e x)
 --> (member e y))
& (forall e : (member e y)
 --> (member e z))
& (member e x)
--> (member e z)

forall hypothesis twice, e/e

(member e x) --> (member e y)
& (member e y) --> (member e z)
& (member e x)
--> (member e z)

<--> forward chaining twice, hypothesis

true

31Monday, April 2, 12

(defun-sk forall-subset (x y)
 (forall e (implies (member e x)
 (member e y))))

(defthm forall-subset-transitive
 (implies (and (forall-subset x y)
 (forall-subset y z))
 (forall-subset x z))
 :hints (("Goal"
 :use ((:instance (:definition forall-subset)
 (x x)
 (y z))
 (:instance forall-subset-necc
 (x x)
 (y y)
 (e (forall-subset-witness x z)))
 (:instance forall-subset-necc
 (x y)
 (y z)
 (e (forall-subset-witness x z)))))))

32Monday, April 2, 12

(include-book "coi/quantification/quantification" :dir :system)

(def::un-sk forall-subset (x y)
 (forall e (implies (member e x)
 (member e y))))

(defthm forall-subset-transitive
 (implies (and (forall-subset x y)
 (forall-subset y z))
 (forall-subset x z))
 :hints ((quant::skosimp) (quant::inst?)))

33Monday, April 2, 12

Conclusion

• Quantification is possible in ACL2 through the
construct defun-sk

• Automated reasoning about quantified formulae is
not supported

• David Greve has contributed a library that helps
automate quantification reasoning

34Monday, April 2, 12

35Monday, April 2, 12

Appendix

36Monday, April 2, 12

defchoose
• Syntax:

(defchoose fn (bound-vars) (free-vars)
 body)

• Simplest way to think about defchoose is that it produces a witnessing
function generated by ACL2.

• A more (but not entirely) correct view is that defchoose acts like an
encapsulate that exports the function name and has the following
theorem/axiom:
(implies body
 (let ((bound-vars (fn free-vars)))
 body))

• With respect to defun-sk, universal quantification results in a negation
of the body of the defun-sk.

• Also a :strengthen argument, but that’s beyond the scope of this talk.
(adds extra axioms about finding a canonical element)

37Monday, April 2, 12

Quantification Theorem

• Third event in defun-sk macro is a theorem, referred to as the “quantification theorem’’:

(defthm function-name-suff ;existential
 (implies body
 (function-name formal-parameters)))

(defthm function-name-necc ;universal
 (implies (not body)
 (not (function-name formal-parameters))))

• The best way to think about this theorem is that it can be used to supply a witness in a
proof.

• Note the difference between the existential and universal forms. The universal form is
somewhat hard to think about as is. Think about the contrapositive instead.

• The universal version isn’t a great rewrite rule (because of the not in the conclusion). If
you supply the option :rewrite :direct to defun-sk, then the contrapositive will be used
instead:
(defthm function-name-necc ;universal with :rewrite :direct
 (implies (function-name formal-parameters)
 body))

38Monday, April 2, 12

