
Applying Abstract Stobjs

to Processor Modeling

Shilpi Goel
Warren Hunt

Matt Kaufmann

ACL2 Seminar, October 2, 2012

1/31

Outline

Introduction

Processor Modeling

Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

2/31

Outline

Introduction

Processor Modeling

Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

3/31

Introduction

Goal: Illustrate abstract stobjs and their application to processor modeling

4/31

Introduction: Processor Models

ACL2 processor models:

◮ (Hunt) Bryant’s Y86

◮ (Hunt, Kaufmann) Early X86 model with space-efficient memory model

◮ (Hunt, Goel) New X86 model

◮ (Kaufmann) Abstract Stobjs: Early X86 model

◮ (Goel) Y86 with space-efficient memory model

◮ (Goel) [In progress] Abstract stobjs: Y86 (towards X86)

◮ (Krug) [In progress] Paging in X86

5/31

Introduction: Code Proofs

◮ (Moore, others) Using rewriting

◮ (Swords) Symbolic Execution using GL

◮ Hunt and Kaufmann used GL for code proofs on a non-stobj Y86
model.

◮ How can we use GL to do proofs about large stobj memories
efficiently?

Abstract Stobjs!

6/31

Introduction: Code Proofs

◮ (Moore, others) Using rewriting

◮ (Swords) Symbolic Execution using GL

◮ Hunt and Kaufmann used GL for code proofs on a non-stobj Y86
model.

◮ How can we use GL to do proofs about large stobj memories
efficiently?

Abstract Stobjs!

6/31

Introduction: Code Proofs

◮ (Moore, others) Using rewriting

◮ (Swords) Symbolic Execution using GL

◮ Hunt and Kaufmann used GL for code proofs on a non-stobj Y86
model.

◮ How can we use GL to do proofs about large stobj memories
efficiently?

Abstract Stobjs!

6/31

Introduction: Code Proofs

◮ (Moore, others) Using rewriting

◮ (Swords) Symbolic Execution using GL

◮ Hunt and Kaufmann used GL for code proofs on a non-stobj Y86
model.

◮ How can we use GL to do proofs about large stobj memories
efficiently?

Abstract Stobjs!

6/31

Introduction: Code Proofs

◮ (Moore, others) Using rewriting

◮ (Swords) Symbolic Execution using GL

◮ Hunt and Kaufmann used GL for code proofs on a non-stobj Y86
model.

◮ How can we use GL to do proofs about large stobj memories
efficiently?

Abstract Stobjs!

6/31

Outline

Introduction

Processor Modeling

Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

7/31

Processor Modeling: Y86 State

◮ Before we model the ISA of the Y86, we need to define its state.

◮ The Y86 processor state (which we call y86$c) is defined using a single
threaded object, or stobj.

◮ Stobjs in ACL2 are mutable objects that have applicative semantics.

8/31

Processor Modeling: Y86 State

◮ Before we model the ISA of the Y86, we need to define its state.

◮ The Y86 processor state (which we call y86$c) is defined using a single
threaded object, or stobj.

◮ Stobjs in ACL2 are mutable objects that have applicative semantics.

8/31

Processor Modeling: Y86 State

◮ Before we model the ISA of the Y86, we need to define its state.

◮ The Y86 processor state (which we call y86$c) is defined using a single
threaded object, or stobj.

◮ Stobjs in ACL2 are mutable objects that have applicative semantics.

8/31

Processor Modeling: Processor State
(defstobj y86$c

;; The program counter.
(eip$c :type (unsigned-byte 32)

:initially 0)
...
;; The memory model: space-efficient implementation
(mem-table :type (array (unsigned-byte 32)

(*mem-table-size*))
:initially 1
:resizable nil)

(mem-array :type (array (unsigned-byte 8)
(*initial-mem-array-length*))

:initially 0
:resizable t)

(mem-array-next-addr :type (integer 0 4294967296)
:initially 0)

...
:renaming ((y86$cp y86$cp-pre))
)

9/31

Processor Modeling: Invariant on the Processor State

◮ We have renamed the recognizer for the y86$c stobj from y86$cp to
y86$cp-pre.

◮ Why? Because we need a stronger invariant, which we call y86$cp, on
the Y86 state than the stobj recognizer.

◮ So what is this invariant?

(defun y86$cp (y86$c)
(declare (xargs :stobjs y86$c))
(and (y86$cp-pre y86$c)

(good-memp y86$c)))

10/31

Processor Modeling: Invariant on the Processor State

◮ We have renamed the recognizer for the y86$c stobj from y86$cp to
y86$cp-pre.

◮ Why? Because we need a stronger invariant, which we call y86$cp, on
the Y86 state than the stobj recognizer.

◮ So what is this invariant?

(defun y86$cp (y86$c)
(declare (xargs :stobjs y86$c))
(and (y86$cp-pre y86$c)

(good-memp y86$c)))

10/31

Processor Modeling: Invariant on the Processor State

◮ We have renamed the recognizer for the y86$c stobj from y86$cp to
y86$cp-pre.

◮ Why? Because we need a stronger invariant, which we call y86$cp, on
the Y86 state than the stobj recognizer.

◮ So what is this invariant?

(defun y86$cp (y86$c)
(declare (xargs :stobjs y86$c))
(and (y86$cp-pre y86$c)

(good-memp y86$c)))

10/31

Processor Modeling: mem$ci and !mem$ci

We define functions to read (mem$ci) and write (!mem$ci) to the memory.

(defun mem$ci (i y86$c)
(declare (xargs :stobjs y86$c

:guard (and (integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(y86$cp y86$c))))

(let* ((i-top (ash i (- *2^x-byte-pseudo-page*)))
(addr (mem-tablei i-top y86$c)))

(cond ((eql addr 1) ;; page is not present

default-mem-value)
(t (let ((index (logior addr (logand 16777215 i))))

(mem-arrayi index y86$c))))))

We can define the usual read-over-write and write-over-write theorems about
the memory using these two functions.

11/31

Processor Modeling: mem$ci and !mem$ci

We define functions to read (mem$ci) and write (!mem$ci) to the memory.

(defun mem$ci (i y86$c)
(declare (xargs :stobjs y86$c

:guard (and (integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(y86$cp y86$c))))

(let* ((i-top (ash i (- *2^x-byte-pseudo-page*)))
(addr (mem-tablei i-top y86$c)))

(cond ((eql addr 1) ;; page is not present

default-mem-value)
(t (let ((index (logior addr (logand 16777215 i))))

(mem-arrayi index y86$c))))))

We can define the usual read-over-write and write-over-write theorems about
the memory using these two functions.

11/31

Processor Modeling: mem$ci and !mem$ci

We define functions to read (mem$ci) and write (!mem$ci) to the memory.

(defun mem$ci (i y86$c)
(declare (xargs :stobjs y86$c

:guard (and (integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(y86$cp y86$c))))

(let* ((i-top (ash i (- *2^x-byte-pseudo-page*)))
(addr (mem-tablei i-top y86$c)))

(cond ((eql addr 1) ;; page is not present

default-mem-value)
(t (let ((index (logior addr (logand 16777215 i))))

(mem-arrayi index y86$c))))))

We can define the usual read-over-write and write-over-write theorems about
the memory using these two functions.

11/31

Processor Modeling: Memory Read-Write Theorem
Read-over-Write theorem:

(defthm read-write
(implies (and (y86$cp y86$c)

(integerp i)
(<= 0 i)
(< i *mem-size-in-bytes*)
(integerp j)
(<= 0 j)
(< j *mem-size-in-bytes*)
(n08p v))

(equal (mem$ci j (!mem$ci i v y86$c))
(if (equal i j)

v
(mem$ci j y86$c)))))

12/31

Processor Modeling: Y86 run function

We define a “classic” ACL2 instruction interpreter. Here’s the run function of
the Y86:

(defund y86 (y86$c n)
(declare (xargs :guard (and (natp n)

(y86$cp y86$c))
:measure (acl2-count n)
:stobjs (y86$c)))

(if (mbe :logic (zp n) :exec (= n 0))
y86$c

(if (ms y86$c)
y86$c

(let ((y86$c (y86-step y86$c)))
(y86 y86$c (1- n))))))

13/31

Processor Modeling: Y86 step function

Here’s the step function:

(defund y86-step (y86$c)
(declare (xargs :guard (y86$cp y86$c)

:stobjs (y86$c)))
(b* ((pc (eip y86$c))

(byte-at-pc (rm08 pc y86$c)))
(case byte-at-pc

;; halt: Stop the machine
(#x00 (y86-halt y86$c))
...
;; jmp, jle, jl, je, jne, jge, jg: Conditional jump

(#x70 (y86-cjump y86$c 0))
...
(#x76 (y86-cjump y86$c 6))
...
(t (y86-illegal-opcode y86$c)))))

14/31

Outline

Introduction

Processor Modeling

Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

15/31

Abstract Stobjs: Introduction

Abstract Stobjs were introduced in ACL2 Version 5.0.

Abstract: a0 → a1 → a2 → . . .

correspondence: m m m . . .

Concrete: c0 → c1 → c2 → . . .

16/31

Abstract Stobjs: defabsstobj

(defabsstobj y86
:concrete y86$c
:recognizer (y86p :logic y86$ap

:exec y86$cp-pre)
:creator (create-y86 :logic create-y86$a

:exec create-y86$c)
:corr-fn corr
:exports ((eip :logic eip$a :exec eip$c)

(!eip :logic !eip$a :exec !eip$c)

...
(memi :logic mem$ai :exec mem$ci)
(!memi :logic !mem$ai :exec !mem$ci)))

17/31

Abstract Stobj: Y86 Correspondence Function

(defun-sk corr-mem (y86$c abs-memory-field)
(forall i

(implies (and (natp i)
(< i *mem-size-in-bytes*))

(equal (mem$ci i y86$c)
(g i abs-memory-field)))))

(defun-nx corr (c a)
(and (y86$cp c)

(y86$ap a)
(equal (nth *eip* c) (nth *eip* a))
...
(corr-mem c (nth *memi* a))))

18/31

Abstract Stobj: Y86 Correspondence and Preservation
Theorems

(defthm !memi{correspondence}
(implies (and (corr y86$c y86)

(y86$ap y86)
(n32p i)
(n08p v))

(corr (!mem$ci i v y86$c)
(!mem$ai i v y86))))

(defthm !memi{preserved}
(implies (and (y86$ap y86)

(n32p i)
(n08p v))

(y86$ap (!mem$ai i v y86))))

19/31

Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

◮ Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

◮ Define the complicated invariant on the concrete stobj (i.e. y86$cp).

◮ Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

◮ Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

◮ Prove the correspondence, preservation, and guard theorems for the
above functions.

◮ Define the abstract stobj — y86 — corresponding to the concrete stobj.

20/31

Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

◮ Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

◮ Define the complicated invariant on the concrete stobj (i.e. y86$cp).

◮ Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

◮ Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

◮ Prove the correspondence, preservation, and guard theorems for the
above functions.

◮ Define the abstract stobj — y86 — corresponding to the concrete stobj.

20/31

Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

◮ Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

◮ Define the complicated invariant on the concrete stobj (i.e. y86$cp).

◮ Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

◮ Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

◮ Prove the correspondence, preservation, and guard theorems for the
above functions.

◮ Define the abstract stobj — y86 — corresponding to the concrete stobj.

20/31

Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

◮ Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

◮ Define the complicated invariant on the concrete stobj (i.e. y86$cp).

◮ Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

◮ Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

◮ Prove the correspondence, preservation, and guard theorems for the
above functions.

◮ Define the abstract stobj — y86 — corresponding to the concrete stobj.

20/31

Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

◮ Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

◮ Define the complicated invariant on the concrete stobj (i.e. y86$cp).

◮ Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

◮ Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

◮ Prove the correspondence, preservation, and guard theorems for the
above functions.

◮ Define the abstract stobj — y86 — corresponding to the concrete stobj.

20/31

Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

◮ Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

◮ Define the complicated invariant on the concrete stobj (i.e. y86$cp).

◮ Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

◮ Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

◮ Prove the correspondence, preservation, and guard theorems for the
above functions.

◮ Define the abstract stobj — y86 — corresponding to the concrete stobj.

20/31

Outline

Introduction

Processor Modeling

Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

21/31

Eliminating Hypotheses

(defthm read-write
;; NO hypotheses at all!

(equal (memi i (!memi j v y86))
(if (equal i j)

(or v 0)
(memi i y86))))

Compare this theorem with the read-write theorem we saw earlier!

22/31

Avoiding Expensive Guard Checking

(defund y86 (y86 n)
(declare (xargs :guard (natp n)

:measure (acl2-count n)
:stobjs (y86)))

(if (mbe :logic (zp n) :exec (= n 0))
y86

(if (ms y86)
y86

(let ((y86 (y86-step y86)))
(y86 y86 (1- n))))))

Compare this function with the run function we saw earlier!

ACL2 does not evaluate calls to the stobj recognizer!

23/31

Avoiding Expensive Guard Checking

(defund y86 (y86 n)
(declare (xargs :guard (natp n)

:measure (acl2-count n)
:stobjs (y86)))

(if (mbe :logic (zp n) :exec (= n 0))
y86

(if (ms y86)
y86

(let ((y86 (y86-step y86)))
(y86 y86 (1- n))))))

Compare this function with the run function we saw earlier!

ACL2 does not evaluate calls to the stobj recognizer!

23/31

Avoiding Expensive Guard Checking

(defund y86 (y86 n)
(declare (xargs :guard (natp n)

:measure (acl2-count n)
:stobjs (y86)))

(if (mbe :logic (zp n) :exec (= n 0))
y86

(if (ms y86)
y86

(let ((y86 (y86-step y86)))
(y86 y86 (1- n))))))

Compare this function with the run function we saw earlier!

ACL2 does not evaluate calls to the stobj recognizer!

23/31

Outline

Introduction

Processor Modeling

Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

24/31

GL and Symbolic Execution

◮ GL is a framework for proving finite ACL2 theorems.

◮ GL can symbolically execute finite terms.

25/31

Popcount Program in the Y86

<Demo>

26/31

An Observation...

◮ GL symbolically executes functions according to ACL2 logic...

◮ Which means: GL symbolically executes the logical definitions of the
stobj functions (like rgfi in our popcount proof) — we do not get the
performance of stobj operations.

27/31

An Observation...

◮ GL symbolically executes functions according to ACL2 logic...

◮ Which means: GL symbolically executes the logical definitions of the
stobj functions (like rgfi in our popcount proof) — we do not get the
performance of stobj operations.

27/31

How did abstract stobjs help?

◮ Imagine we only had the concrete stobj.

◮ Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

◮ GL would need to symbolically execute mem$ci and !mem$ci,
which have complicated definitions

◮ With abstract stobjs, we have:

◮ A smaller memory representation since we use records to model
the memory

◮ Simpler definitions of memi and !memi

28/31

How did abstract stobjs help?

◮ Imagine we only had the concrete stobj.

◮ Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

◮ GL would need to symbolically execute mem$ci and !mem$ci,
which have complicated definitions

◮ With abstract stobjs, we have:

◮ A smaller memory representation since we use records to model
the memory

◮ Simpler definitions of memi and !memi

28/31

How did abstract stobjs help?

◮ Imagine we only had the concrete stobj.

◮ Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

◮ GL would need to symbolically execute mem$ci and !mem$ci,
which have complicated definitions

◮ With abstract stobjs, we have:

◮ A smaller memory representation since we use records to model
the memory

◮ Simpler definitions of memi and !memi

28/31

How did abstract stobjs help?

◮ Imagine we only had the concrete stobj.

◮ Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

◮ GL would need to symbolically execute mem$ci and !mem$ci,
which have complicated definitions

◮ With abstract stobjs, we have:

◮ A smaller memory representation since we use records to model
the memory

◮ Simpler definitions of memi and !memi

28/31

How did abstract stobjs help?

◮ Imagine we only had the concrete stobj.

◮ Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

◮ GL would need to symbolically execute mem$ci and !mem$ci,
which have complicated definitions

◮ With abstract stobjs, we have:

◮ A smaller memory representation since we use records to model
the memory

◮ Simpler definitions of memi and !memi

28/31

How did abstract stobjs help?

◮ Imagine we only had the concrete stobj.

◮ Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

◮ GL would need to symbolically execute mem$ci and !mem$ci,
which have complicated definitions

◮ With abstract stobjs, we have:

◮ A smaller memory representation since we use records to model
the memory

◮ Simpler definitions of memi and !memi

28/31

Outline

Introduction

Processor Modeling

Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

29/31

Conclusion

We talked about:

◮ How, during our work on processor models, we realized the need for
abstract stobjs

◮ How abstract stobjs solved our problems and made it possible to:

◮ Prove theorems with fewer hypotheses
◮ Avoid expensive guard checking
◮ Use GL to do proofs involving large stobj memories

30/31

Conclusion

We talked about:

◮ How, during our work on processor models, we realized the need for
abstract stobjs

◮ How abstract stobjs solved our problems and made it possible to:

◮ Prove theorems with fewer hypotheses
◮ Avoid expensive guard checking
◮ Use GL to do proofs involving large stobj memories

30/31

Thank You!

31/31

	Introduction
	Processor Modeling
	Abstract Stobjs
	Two Advantages of Abstract Stobjs
	Eliminating Hypotheses
	Avoiding Expensive Guard-Checking

	Proof by Symbolic Execution (GL)
	GL: Introduction
	Proof of Correctness of the Y86 Popcount Program

	Conclusion

