Applying Abstract Stobjs
to Processor Modeling

Shilpi Goel
Warren Hunt
Matt Kaufmann

ACL2 Seminar, October 2, 2012

1/31



Outline

Introduction
Processor Modeling
Abstract Stobjs

Two Advantages of Abstract Stobjs
Eliminating Hypotheses
Avoiding Expensive Guard-Checking

Proof by Symbolic Execution (GL)
GL: Introduction
Proof of Correctness of the Y86 Popcount Program

Conclusion

2/31



Outline

Introduction

2/21



Introduction

Goal: lllustrate abstract stobjs and their application to processor modeling

4/31



Introduction: Processor Models

ACL2 processor models:

v

(Hunt) Bryant’s Y86

(Hunt, Kaufmann) Early X86 model with space-efficient memory model
(Hunt, Goel) New X86 model

(Kaufmann) Abstract Stobjs: Early X86 model

(Goel) Y86 with space-efficient memory model

(Goel) [In progress] Abstract stobjs: Y86 (towards X86)

(Krug) [In progress] Paging in X86

vV vVvVvyVvVvyy

5/321



Introduction: Code Proofs

» (Moore, others) Using rewriting

6/31



Introduction: Code Proofs

» (Moore, others) Using rewriting

» (Swords) Symbolic Execution using GL

6/31



Introduction: Code Proofs

» (Moore, others) Using rewriting
» (Swords) Symbolic Execution using GL

» Hunt and Kaufmann used GL for code proofs on a non-stobj Y86
model.

6/31



Introduction: Code Proofs

» (Moore, others) Using rewriting
» (Swords) Symbolic Execution using GL

» Hunt and Kaufmann used GL for code proofs on a non-stobj Y86

model.
» How can we use GL to do proofs about large stobj memories
efficiently?

6/31



Introduction: Code Proofs

» (Moore, others) Using rewriting
» (Swords) Symbolic Execution using GL

» Hunt and Kaufmann used GL for code proofs on a non-stobj Y86

model.
» How can we use GL to do proofs about large stobj memories
efficiently?

Abstract Stobjs!

6/31



Outline

Processor Modeling

7/31



Processor Modeling: Y86 State

» Before we model the ISA of the Y86, we need to define its state.

/21



Processor Modeling: Y86 State

» Before we model the ISA of the Y86, we need to define its state.

» The Y86 processor state (which we call y86%c) is defined using a single
threaded object, or stobj.

/21



Processor Modeling: Y86 State

» Before we model the ISA of the Y86, we need to define its state.

» The Y86 processor state (which we call y86%c) is defined using a single
threaded object, or stobj.

» Stobjs in ACL2 are mutable objects that have applicative semantics.

/21



Processor Modeling: Processor State

(def st obj y86%c
;; The program counter
(ei p$c :type (unsigned-byte 32)
dinitially 0)

; The nenory nodel : space-efficient inplenentation
(memtable :type (array (unsigned-byte 32)
(*nmemt abl e-si zex))
dinitially 1
:resizable nil)

(memarray :type (array (unsigned-byte 8)
(*initial-memarray-|engthx))
sinitially O
:resizable t)

(mem array-next-addr :type (integer 0 4294967296)
cinitially 0)

;}énaning ((y86%cp y86%cp-pre))
)

9/31



Processor Modeling: Invariant on the Processor State

» We have renamed the recognizer for the y86$c stobj from y86%cp to
y86%cp-pre.

10/31



Processor Modeling: Invariant on the Processor State

» We have renamed the recognizer for the y86$c stobj from y86%cp to
y86%cp-pre.

» Why? Because we need a stronger invariant, which we call y86$cp, on
the Y86 state than the stobj recognizer.

10/31



Processor Modeling: Invariant on the Processor State

» We have renamed the recognizer for the y86$c stobj from y86%cp to
y86%cp-pre.

» Why? Because we need a stronger invariant, which we call y86$cp, on
the Y86 state than the stobj recognizer.

» So what is this invariant?

(defun y86%cp (y86%c)
(decl are (xargs :stobjs y86%c))
(and (y86%cp-pre y86%c)
(good- nenp y86%$c)))

10/31



Processor Modeling: mem$ci and !'mem$ci

We define functions to read (mem$ci) and write (mem$ci) to the memory.

11/31



Processor Modeling: mem$ci and !'mem$ci

We define functions to read (mem$ci) and write (mem$ci) to the memory.

(defun nensci (i y86%c)
(decl are (xargs :stobjs y86%c
:guard (and (integerp i)
(<=01)
(< i *memsize-in-bytes*)
(y86$cp y86%c))))
(letx ((i-top (ash i (- *2"x-byte-pseudo-page*)))
(addr (nmemtablei i-top y86%c)))
(cond ((eql addr 1) ;; page is not present
xdef aul t - mem val uex)
(t (let ((index (logior addr (logand 16777215 i))))
(memarrayi index y86%c))))))

11/31



Processor Modeling: mem$ci and !'mem$ci

We define functions to read (mem$ci) and write (mem$ci) to the memory.

(defun nensci (i y86%c)
(decl are (xargs :stobjs y86%c
:guard (and (integerp i)
(<=01)
(< i *memsize-in-bytes*)
(y86%cp y86%c))))
(letx ((i-top (ash i (- *2"x-byte-pseudo-page*)))
(addr (nmemtablei i-top y86%c)))
(cond ((eql addr 1) ;; page is not present
xdef aul t - mem val uex)
(t (let ((index (logior addr (logand 16777215 i))))
(memarrayi index y86%c))))))

We can define the usual read-over-write and write-over-write theorems about
the memory using these two functions.

11/31



Processor Modeling: Memory Read-Write Theorem

Read-over-Write theorem:

(defthmread-wite
(implies (and (y86%cp y86%c)
(integerp i)
(<=01)
(< i =nemsize-in-bytesx)
(integerp j)
(<=01])
(<] *nmemsize-in-bytesx)
(n08p v))
(equal (nmentci j (!'nmentci i v y86%c))
(if (equal i j)
%
(mendci j y86%c)))))

12/31



Processor Modeling: Y86 run function

We define a “classic” ACL2 instruction interpreter. Here’s the run function of
the Y86:

(defund y86 (y86%c n)
(decl are (xargs :guard (and (natp n)
(y86%cp y86%c))
:nmeasure (acl 2-count n)
:stobjs (y86%c)))
(if (nmbe :logic (zp n) :exec (= n 0))
y86%c
(if (s y86%c)
y86%c
(let ((y86%c (y86-step y86%c)))
(y86 y86%c (1- n))))))

13/31



Processor Modeling: Y86 step function

Here's the step function:

(defund y86-step (y86%c)
(decl are (xargs :guard (y86%cp y86%c)
:stobjs (y86%c)))
(b* ((pc (eip y86%c))
(byte-at-pc (rnD8 pc y86%c)))
(case byte-at-pc

halt: Stop the nachine
(#x00 (y86-halt y86%$c))

vo Jmp, jle, jl, je, jne, jge, jg

(#x70 (y86-cjunp y86%c 0))
(#x76 (y86-cjunp y86%c 6))

(t (y86-illegal -opcode y86%c)))))

Condi tional junp

14/31



Outline

Abstract Stobjs

15/31



Abstract Stobjs: Introduction

Abstract Stobjs were introduced in ACL2 Version 5.0.

Abstract: ap - a — a —
correspondence: | ()

Concrete: Co — € — C —

16/31



Abstract Stobjs: defabsstobj

(def absst obj y86
:concrete y86%c
:recogni zer (y86p :logic y86%ap
. exec y86$cp-pre)
:creator (create-y86 :logic create-y86%a
:exec create-y86%c)
:corr-fn corr
cexports ((eip :logic eip$a :exec eip$c)
('eip :logic !eip$a :exec !eip$c)

(mem :logic nenBai :exec mentci)

('mem :logic !nentai :exec !nmentci)))

17/31



Abstract Stobj: Y86 Correspondence Function

(defun-sk corr-mem (y86%c abs-nenory-field)
(forall i
(implies (and (natp i)
(< i *memsize-in-bytes+))
(equal (nensci i y86%c)
(g i abs-nmenory-field)))))

(defun-nx corr (c a)
(and (y86%cp c)
(y86%ap a)
(equal (nth xeip* c) (nth xeip*x a))

k@n-mmc(mh*WM*ann

18/31



Abstract Stobj: Y86 Correspondence and Preservation
Theorems

(defthm ! mem {correspondence}
(implies (and (corr y86%$c y86)
(y86%ap y86)
(n32p i)
(n08p v))
(corr (!mentsci i v y86%c)
(!mentai i v y86))))

(defthm ! mem {preserved}
(inmplies (and (y86%ap y86)
(n32p i)
(no8p v))
(y86%ap (!nmentai i v y86))))

19/31



Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

» Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

20/31



Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

» Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.

» Define the complicated invariant on the concrete stobj (i.e. y86%cp).

20/31



Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.
» Define a “normal” stobj — y86$c — using the defstobj event; we will call
this the concrete stobj.
» Define the complicated invariant on the concrete stobj (i.e. y86%cp).

» Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

20/31



Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

>

Define a “normal” stobj — y86%c — using the defstobj event; we will call
this the concrete stobj.

Define the complicated invariant on the concrete stobj (i.e. y86$cp).

Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

20/31



Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

>

Define a “normal” stobj — y86%c — using the defstobj event; we will call
this the concrete stobj.

Define the complicated invariant on the concrete stobj (i.e. y86$cp).

Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

Prove the correspondence, preservation, and guard theorems for the
above functions.

20/31



Abstract Stobjs: Summary

Here are the steps involved in introducing a defabsstobj event.

>

Define a “normal” stobj — y86%c — using the defstobj event; we will call
this the concrete stobj.

Define the complicated invariant on the concrete stobj (i.e. y86$cp).

Define the function that describes how the concrete and abstract stobj
will correspond. It is this function that appears in the proof obligations
that must be met before a defabsstobj event is admitted.

Define the accessors, updaters, and recognizers for the fields of the
abstract stobj (and the creator function of the stobj).

Prove the correspondence, preservation, and guard theorems for the
above functions.

Define the abstract stobj — y86 — corresponding to the concrete stobj.

20/31



Outline

Two Advantages of Abstract Stobjs

21/31



Eliminating Hypotheses

(defthmread-wite
;7 NO hypot heses at all!
(equal (mem i (!mem j v y86))
(if (equal i j)
(or v 0)
(mem i y86))))

Compare this theorem with the read-write theorem we saw earlier!

22/31



Avoiding Expensive Guard Checking

(defund y86 (y86 n)
(decl are (xargs :guard (natp n)
:measure (acl 2-count n)
:stobjs (y86)))
(if (nbe :logic (zp n) :exec (= n 0))
y86
(if (ns y86)
y86
(let ((y86 (y86-step y86)))
(y86 y86 (1- n))))))

22/321



Avoiding Expensive Guard Checking

(defund y86 (y86 n)
(decl are (xargs :guard (natp n)
:measure (acl 2-count n)
:stobjs (y86)))
(if (nbe :logic (zp n) :exec (= n 0))
y86
(if (ns y86)
y86
(let ((y86 (y86-step y86)))
(y86 y86 (1- n))))))

Compare this function with the run function we saw earlier!

22/321



Avoiding Expensive Guard Checking

(defund y86 (y86 n)
(decl are (xargs :guard (natp n)
:measure (acl 2-count n)
:stobjs (y86)))
(if (nbe :logic (zp n) :exec (= n 0))
y86
(if (ns y86)
y86
(let ((y86 (y86-step y86)))
(y86 y86 (1- n))))))

Compare this function with the run function we saw earlier!

ACL2 does not evaluate calls to the stobj recognizer!

22/21



Outline

Proof by Symbolic Execution (GL)

24/31



GL and Symbolic Execution

» GL is a framework for proving finite ACL2 theorems.

» GL can symbolically execute finite terms.

25/31



Popcount Program in the Y86

<Demo>

26/31



An Observation...

» GL symbolically executes functions according to ACL2 logic...

27/31



An Observation...

» GL symbolically executes functions according to ACL2 logic...

» Which means: GL symbolically executes the logical definitions of the
stobj functions (like rgfi in our popcount proof) — we do not get the
performance of stobj operations.

27/31



How did abstract stobjs help?

» Imagine we only had the concrete stobj.

28/21



How did abstract stobjs help?

» Imagine we only had the concrete stobj.

» Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

28/21



How did abstract stobjs help?

» Imagine we only had the concrete stobj.

» Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

» GL would need to symbolically execute mem$ci and 'mem$ci,
which have complicated definitions

28/21



How did abstract stobjs help?

» Imagine we only had the concrete stobj.

» Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

» GL would need to symbolically execute mem$ci and 'mem$ci,
which have complicated definitions

» With abstract stobjs, we have:

28/21



How did abstract stobjs help?

» Imagine we only had the concrete stobj.

» Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

» GL would need to symbolically execute mem$ci and 'mem$ci,
which have complicated definitions

» With abstract stobjs, we have:
» A smaller memory representation since we use records to model
the memory

28/21



How did abstract stobjs help?

» Imagine we only had the concrete stobj.

» Inconvenient to do symbolic execution with the logical
representation of a large stobj memory

» GL would need to symbolically execute mem$ci and 'mem$ci,
which have complicated definitions

» With abstract stobjs, we have:
» A smaller memory representation since we use records to model

the memory
» Simpler definitions of memi and 'memi

28/321



Outline

Conclusion

29/31



Conclusion

We talked about:

» How, during our work on processor models, we realized the need for
abstract stobjs

20/31



Conclusion

We talked about:

» How, during our work on processor models, we realized the need for
abstract stobjs

» How abstract stobjs solved our problems and made it possible to:

» Prove theorems with fewer hypotheses
» Avoid expensive guard checking
» Use GL to do proofs involving large stobj memories

20/31



Thank You!

21/31



	Introduction
	Processor Modeling
	Abstract Stobjs
	Two Advantages of Abstract Stobjs
	Eliminating Hypotheses
	Avoiding Expensive Guard-Checking

	Proof by Symbolic Execution (GL)
	GL: Introduction
	Proof of Correctness of the Y86 Popcount Program

	Conclusion

