
Defining and Proving Interval Bounds for
Arithmetic Functions

J Strother Moore

ForrestHunt, Inc.

January, 2013
(source: /u/moore/work/x86-y86/devel/talk-on-bounders.tex)

1



Defining and Proving Interval Bounds for
Arithmetic Functions

and

Getting Tau to Use Them

J Strother Moore

ForrestHunt, Inc.

January, 2013
(source: /u/moore/work/x86-y86/devel/talk-on-bounders.tex)

2



The Tau Project

Ideal Goal: Allow any monadic predicate to be a “type” and

build a “type checker.”

3



The Tau Project

Ideal Goal: Allow any monadic predicate to be a “type” and

build a “type checker”

Realistic Goal: Do it well enough to allow “most” Common

Lisp programs to be “type checked” without inconveniencing

the user “too much.”

4



Basic Ideas

A tau (“type”) is a succinct description of the objects

satisfying a conjunction of monadic predicates. E.g., “naturals

less than 16” is

(and (natp x) (< x 16)).

Tau maintains a data base of inclusion relations between

predicates (“types”) and “signatures” of function symbols.

Currently, the data base is derived entirely from theorems

posed by the user.

5



Tau Predicates: Primitive “Types”

The primitive tau are the predicates of the form (λ(v)β),

where β:

• (p v)

• (EQUAL v ’const)

• (< v ’const), (<= v ’const),

(< ’const v), (<= ’const v)

• negations and obvious variants of the forms above (e.g.,

(EQ v ’const) or (>= v ’const))

6



Tau Predicate Examples

• (natp x)

• (not (integerp x))

• (eq x ’ARRAY)

• (not (equal x ’SKIP))

• (<= x 15)

• (not (= x 7))

7



Tau Rules

Tau builds its data base from theorems proved by the user.

Tau automatically (and silently) tries to extract tau rules from

every kind of :rule-class.

The two most basic shapes tau recognizes are:

Simple: Used to transitively close data base

(implies (p x) (q x))

Signature: Used to compute tau of fn appl

(implies (and (p x) (q y))

(r (fn x y)))

Where p, q, and r are tau predicates (possibly negated).

8



Representation of Tau Objects

If x has tau τ , we say x is the subject of τ .

Internally, a tau data object with subject x explicitly includes:

- all the objects x is equal to,

- certain objects x is not equal to,

- an arithmetic interval containing x,

- all the recognizers x satisfies, and

- all the recognizers x dis-satisfies.

9



Example

Consider the goal:

(implies (and (natp x) (not (equal x 5)) (< x 17))

(p x))

then x has τ

((NIL (5)) (INTEGERP (NIL . 0) NIL . 16)

((144 . FILE-CLOCK-P)

(135 . 32-BIT-INTEGERP) (19 . O-FINP) (17 . NATP) (9 . EQLABLEP)

(5 . RATIONALP) (4 . INTEGERP) (0 . ACL2-NUMBERP)) .

((167 . BAD-ATOM) (154 . WRITABLE-FILE-LISTP1) (151 . READ-FILE-LISTP1)

(148 . WRITTEN-FILE) (145 . READABLE-FILE) (141 . OPEN-CHANNEL1)

(121 . KEYWORDP) (114 . ALPHA-CHAR-P) (105 . IMPROPER-CONSP)

(104 . PROPER-CONSP) (100 . BOOLEANP) (60 . WEAK-CURRENT-LITERAL-P)

(31 . WEAK-IO-RECORD-P) (26 . MINUSP) (7 . SYMBOLP) (6 . STRINGP)

(3 . CONSP) (2 . COMPLEX-RATIONALP) (1 . CHARACTERP)))

10



Representation

If x has tau τ , we say x is the subject of τ .

Internally, a tau data object with subject x explicitly includes:

- all the objects x is equal to,

- certain objects x is not equal to,

- an arithmetic interval containing x,

- all the recognizers x satisfies, and

- all the recognizers x dis-satisfies.

11



Intervals

Internally, every tau includes an interval known to contain the

subject.

(and (integerp x)

(<= 3 x)

(<= x 17))

is represented in the corresponding tau by:

(INTEGERP (nil . 3) . (nil . 17))

12



Intervals

(domain (lo− rel . lo) . (hi− rel . hi))

domain ∈ {INTEGERP, RATIONALP, ACL2-NUMBERP, NIL}

lo− rel ∈ {T, NIL} meaning <or ≤

lo = NIL or a rational (NIL means −∞)

hi− rel ∈ {T, NIL} meaning <or ≤

hi = NIL or a rational (NIL means +∞)

Thus, there are 64 different configurations.

<<go to *shell*>>

13



Computing the Interval for Addition

Suppose x and y are rationals and

0 < x < 15 and 0 < y < 10.

Then, clearly,

0 <(+ x y)< 25

14



Computing the Interval for Addition

Suppose x and y are rationals and

lox < x < hix and loy < y < hiy.

Then, clearly,

lox + loy <(+ x y)< hix + hiy

with appropriate interpretations of infinities and strengths of

the relations.

15



Computing the Interval for Product

Suppose x and y are rationals and

0 < x < 15 and 0 < y < 10.

Then, clearly,

0 <(* x y)< 150

16



Computing the Interval for Product

Suppose x and y are rationals and

0 < x < 15 and −10 < y < 10.

Then, clearly,

−150 <(* x y)< 150

17



Questions

How do we compute the bounds for product?

How do we know our bounds are correct?

How do we bound logical operations like LOGAND and LOGXOR?

How accurate are they?

How can I make tau exploit user-defined bounds functions?

18



Computing the Interval for Product

Suppose x and y are rationals and

0 < x < 15 and −10 < y < 10.

Then, clearly,

−150 <(* x y)< 150

<<Go to *shell*>>

19



Correctness of tau-bounder-*
(implies

(and (tau-intervalp int-x)

(tau-intervalp int-y)

(or (equal (tau-interval-dom int-x) ’INTEGERP)

(equal (tau-interval-dom int-x) ’RATIONALP))

(or (equal (tau-interval-dom int-y) ’INTEGERP)

(equal (tau-interval-dom int-y) ’RATIONALP))

(in-tau-intervalp x int-x)

(in-tau-intervalp y int-y))

(and (tau-intervalp (tau-bounder-* int-x int-y))

(in-tau-intervalp (* x y)

(tau-bounder-* int-x int-y))))

; Subgoals: 40,661; Time: 581s; Steps: 42M

20



Acknowledgement:

Robert Krug defined the first version of tau-bounder-* and

verified its correctness. Thank you Robert!

21



Computing the Interval for LOGAND

Suppose x and y are integers and

lox < x < hix and loy < y < hiy.

Then,

??? <(logand x y)< ???

<<go to *shell*>>

22



On the Accuracy of LOGAND Bound
[threshhold = 100 instead of 1,048,576]

k A E (C)

5 65 100 (99) k: radius of population

10 60 87 (80) A: percentage bounded

15 61 87 (58) perfectly by purely

20 57 77 (43) analytical method

25 58 75 (32) E: percentage bounded

30 60 73 (25) perfectly when

35 57 68 (20) empirical method incl’d

40 56 65 (17) C: percentage of cases

45 56 65 (14) covered by empirical

50 57 65 (12) method

23



Correctness of tau-bounder-logand

(IMPLIES

(AND (TAU-INTERVALP INT1)

(TAU-INTERVALP INT2)

(EQUAL (TAU-INTERVAL-DOM INT1) ’INTEGERP)

(EQUAL (TAU-INTERVAL-DOM INT2) ’INTEGERP)

(IN-TAU-INTERVALP X INT1)

(IN-TAU-INTERVALP Y INT2))

(AND (TAU-INTERVALP (TAU-BOUNDER-LOGAND INT1 INT2))

(IN-TAU-INTERVALP (LOGAND X Y)

(TAU-BOUNDER-LOGAND INT1 INT2))))

24



Computing the Interval for LOGEQV

(logeqv x y) = (logand (logorc1 x y) (logorc1 y x))

(defun tau-bounder-logeqv (int1 int2)

(tau-bounder-logand

(tau-bounder-logorc1 int1 int2)

(tau-bounder-logorc1 int2 int1)))

25



Using Bounders in the ACL2 Code

I defined bounders for +, *, /, FLOOR, MOD, LOGAND, LOGNOT,

LOGIOR, LOGORC1, LOGEQV, LOGXOR, ASH.

I was worried whether they were correct so I verified them.

Then I was faced with either

(a) including them in the trusted source code and calling all

12 appropriately from the tau code, or

(b) supporting user-defined bounders.

26



General Form of a Tau Bounder Rule
(implies (and (tau-intervalp i1) . . . (tau-intervalp ik)

(or (equal (tau-interval-dom i1) ’dom1,1)

. . .)

. . .

(or (equal (tau-interval-dom ik) ’domk,1)

. . .)

. . .

(in-tau-intervalp v1 i1)

. . .

(in-tau-intervalp vk ik))

(and

(tau-intervalp (bounder i1 . . . ik))

(in-tau-interval (fn v1 . . . vk x1 . . .)

(bounder i1 . . . ik))))

27



Making Tau Use Bounder Rules

The lemma shapes recognized by the tau system have been

expanded to include tau bounder rules.

When the system is asked to compute the tau for a function

application it

- applies all bounder rules and intersects the intervals, and

then

- applies signature rules

<<go to *shell*>>

28



Further Work

Add special handling in tau for (< α β); right now that is

just Boolean unless α or β are constants

What other functions should have bounders defined in the

bounders book? Currently supported: +, *, /, FLOOR, MOD,

LOGAND, LOGNOT, LOGIOR, LOGORC1, LOGEQV, LOGXOR, ASH.

Perhaps the bounders book should be included as part of

arithmetic-5/top? Some other arithmetic library?

29


