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X86 STATE

Component Description
registers general-purpose,

segment, debug, control,
model-specific registers

rip instruction pointer
flg 64-bit flags register
mem physical memory (4096 TB)
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if halt instruction encountered:
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run (n - 1, step (x86))
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STEP FUNCTION

step (x86):

pc = rip (x86)

[prefixes, opcode, ... , imm] = Fetch-and-Decode (pc, x86)

case opcode:
#x00 -> add-semantic-fn (prefixes, ... , imm, x86)

... ...

#xFF -> inc-semantic-fn (prefixes, ... , imm, x86)
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EXECUTING BINARY PROGRAMS ON X86 MODEL

GCC/LLVM Compiler

Objdump, Shell Scripts, 
Python

ACL2/Lisp
Constant

Memory

X86 State

Registers

Instruction 
Pointer Flags

X86 Model in ACL2

X86 Run Function

X86 Step Function

X86 Instruction Semantic Functions

( d e f c o n s t  * p r o g r a m - b i n a r y *
. . . )

Subset 
Operation

Implemented Opcodes

Program
Opcodes

No --- implement 
required opcodes

Yes

Real Machine

Machine State

Registers

Instruction 
Pointer Flags

Memory

...

...

...

Co-simulation

Are program 
opcodes a 
subset of 
implemented 
opcodes?

Transform
Operation

State-by-State
Diff

GDB scripts,
Formatting 
functions

ACL2 printing
functions
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SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data

; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations
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DEMO

Automatic correctness proof for an x86 popcount binary
program, for counting the number of non-zero bits in the

bit-level representation of an unsigned integer input.
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