
INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

A Formal Model of the X86 ISA
for

Binary Program Verification

Shilpi Goel

The University of Texas at Austin

April 2, 2013

1/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

2/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

3/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS

1. Develop an accurate, non-idealized model of the x86
Instruction Set Architecture (ISA)

2. Develop automated procedures for reasoning about x86
machine code

Infrastructure for verification of linux utilities like cat and od

4/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS

1. Develop an accurate, non-idealized model of the x86
Instruction Set Architecture (ISA)

2. Develop automated procedures for reasoning about x86
machine code

Infrastructure for verification of linux utilities like cat and od

4/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS

1. Develop an accurate, non-idealized model of the x86
Instruction Set Architecture (ISA)

2. Develop automated procedures for reasoning about x86
machine code

Infrastructure for verification of linux utilities like cat and od

4/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

WHY DO WE CARE?

I Analysis of high-level programs is not good enough.

I High-level programs are not always available.

I Formal verification of machine code!

I Formal Model of the x86 ISA
I Reason about machine code on this model

5/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

WHY DO WE CARE?

I Analysis of high-level programs is not good enough.

I High-level programs are not always available.

I Formal verification of machine code!

I Formal Model of the x86 ISA
I Reason about machine code on this model

5/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

WHY DO WE CARE?

I Analysis of high-level programs is not good enough.

I High-level programs are not always available.

I Formal verification of machine code!

I Formal Model of the x86 ISA
I Reason about machine code on this model

5/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

WHY DO WE CARE?

I Analysis of high-level programs is not good enough.

I High-level programs are not always available.

I Formal verification of machine code!

I Formal Model of the x86 ISA
I Reason about machine code on this model

5/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

WHY DO WE CARE?

I Analysis of high-level programs is not good enough.

I High-level programs are not always available.

I Formal verification of machine code!

I Formal Model of the x86 ISA

I Reason about machine code on this model

5/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

WHY DO WE CARE?

I Analysis of high-level programs is not good enough.

I High-level programs are not always available.

I Formal verification of machine code!

I Formal Model of the x86 ISA
I Reason about machine code on this model

5/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

6/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

MACHINE CODE VERIFICATION ON FORMAL

PROCESSOR MODELS

7/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

I Specifications: Intel’s Software Developer’s Manuals

I ~4000 pages of prose

I Model should emulate the real machine

I Co-simulations

I Need executability to do co-simulations

8/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

2. Develop automated procedures for reasoning about x86
machine code

I Functional correctness of machine code

I Minimize lemma construction

9/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

2. Develop automated procedures for reasoning about x86
machine code

I Functional correctness of machine code

I Minimize lemma construction

9/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

2. Develop automated procedures for reasoning about x86
machine code

I Functional correctness of machine code

I Minimize lemma construction

9/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUR GOALS, REVISITED

1. Develop an accurate, non-idealized, formal, and
executable model of the x86 ISA

2. Develop automated procedures for reasoning about x86
machine code

I Functional correctness of machine code

I Minimize lemma construction

9/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

10/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

11/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

ACL2?

I A Computational Logic for Applicative Common Lisp

I Programming language

I Mathematical logic

I Mechanical theorem prover

12/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

ACL2?

I A Computational Logic for Applicative Common Lisp

I Programming language

I Mathematical logic

I Mechanical theorem prover

12/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

ACL2?

I A Computational Logic for Applicative Common Lisp

I Programming language

I Mathematical logic

I Mechanical theorem prover

12/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

ACL2?

I A Computational Logic for Applicative Common Lisp

I Programming language

I Mathematical logic

I Mechanical theorem prover

12/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

ACL2?

I A Computational Logic for Applicative Common Lisp

I Programming language

I Mathematical logic

I Mechanical theorem prover

12/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

I Our x86 ISA model has been formalized using an
interpreter approach to operational semantics.

I Semantics of a program is given by the effect it has on the
state of the machine.

I State-transition function is characterized by a recursively
defined interpreter.

13/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

I Our x86 ISA model has been formalized using an
interpreter approach to operational semantics.

I Semantics of a program is given by the effect it has on the
state of the machine.

I State-transition function is characterized by a recursively
defined interpreter.

13/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FORMALIZING X86 ISA IN ACL2

I Our x86 ISA model has been formalized using an
interpreter approach to operational semantics.

I Semantics of a program is given by the effect it has on the
state of the machine.

I State-transition function is characterized by a recursively
defined interpreter.

13/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 STATE

Component Description
registers general-purpose,

segment, debug, control,
model-specific registers

rip instruction pointer
flg 64-bit flags register
mem physical memory (4096 TB)

14/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

RUN FUNCTION

Recursively defined interpreter that specifies the x86 model

run (n, x86):

if n == 0:
return (x86)

else
if halt instruction encountered:

return (x86)
else

run (n - 1, step (x86))

15/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

RUN FUNCTION

Recursively defined interpreter that specifies the x86 model

run (n, x86):

if n == 0:
return (x86)

else
if halt instruction encountered:

return (x86)
else

run (n - 1, step (x86))

15/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

STEP FUNCTION

step (x86):

pc = rip (x86)

[prefixes, opcode, ... , imm] = Fetch-and-Decode (pc, x86)

case opcode:
#x00 -> add-semantic-fn (prefixes, ... , imm, x86)

... ...

#xFF -> inc-semantic-fn (prefixes, ... , imm, x86)

16/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

INSTRUCTION SEMANTIC FUNCTIONS

I INPUT: x86 state
Decoded components of the instruction

OUTPUT: Next x86 state

I A semantic function describes the effects of executing an
instruction.

I Every instruction in the model has its own semantic
function.

17/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

INSTRUCTION SEMANTIC FUNCTIONS

I INPUT: x86 state
Decoded components of the instruction

OUTPUT: Next x86 state

I A semantic function describes the effects of executing an
instruction.

I Every instruction in the model has its own semantic
function.

17/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

INSTRUCTION SEMANTIC FUNCTIONS

I INPUT: x86 state
Decoded components of the instruction

OUTPUT: Next x86 state

I A semantic function describes the effects of executing an
instruction.

I Every instruction in the model has its own semantic
function.

17/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 MODEL

We use Intel’s Software Developer’s Manuals as our
specification.

I 64-bit mode

I Model entire 252 bytes (4096 TB) of memory

I All addressing modes

I 118 user-mode instructions (219 opcodes)

I Execution speed: ~3.3 million instructions/second

I +40,000 lines of code

18/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 MODEL

We use Intel’s Software Developer’s Manuals as our
specification.

I 64-bit mode

I Model entire 252 bytes (4096 TB) of memory

I All addressing modes

I 118 user-mode instructions (219 opcodes)

I Execution speed: ~3.3 million instructions/second

I +40,000 lines of code

18/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 MODEL

We use Intel’s Software Developer’s Manuals as our
specification.

I 64-bit mode

I Model entire 252 bytes (4096 TB) of memory

I All addressing modes

I 118 user-mode instructions (219 opcodes)

I Execution speed: ~3.3 million instructions/second

I +40,000 lines of code

18/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 MODEL

We use Intel’s Software Developer’s Manuals as our
specification.

I 64-bit mode

I Model entire 252 bytes (4096 TB) of memory

I All addressing modes

I 118 user-mode instructions (219 opcodes)

I Execution speed: ~3.3 million instructions/second

I +40,000 lines of code

18/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 MODEL

We use Intel’s Software Developer’s Manuals as our
specification.

I 64-bit mode

I Model entire 252 bytes (4096 TB) of memory

I All addressing modes

I 118 user-mode instructions (219 opcodes)

I Execution speed: ~3.3 million instructions/second

I +40,000 lines of code

18/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

X86 MODEL

We use Intel’s Software Developer’s Manuals as our
specification.

I 64-bit mode

I Model entire 252 bytes (4096 TB) of memory

I All addressing modes

I 118 user-mode instructions (219 opcodes)

I Execution speed: ~3.3 million instructions/second

I +40,000 lines of code

18/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

19/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

EXECUTING BINARY PROGRAMS ON X86 MODEL

GCC/LLVM Compiler

Objdump, Shell Scripts,
Python

ACL2/Lisp
Constant

Memory

X86 State

Registers

Instruction
Pointer Flags

X86 Model in ACL2

X86 Run Function

X86 Step Function

X86 Instruction Semantic Functions

(d e f c o n s t * p r o g r a m - b i n a r y *
. . .)

Subset
Operation

Implemented Opcodes

Program
Opcodes

No --- implement
required opcodes

Yes

Real Machine

Machine State

Registers

Instruction
Pointer Flags

Memory

...

...

...

Co-simulation

Are program
opcodes a
subset of
implemented
opcodes?

Transform
Operation

State-by-State
Diff

GDB scripts,
Formatting
functions

ACL2 printing
functions

20/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

21/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

22/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: CLOCK FUNCTION APPROACH

I Write the program’s specification

I Write the algorithm used in the program

I Prove that the algorithm satisfies the specification

I Define clock functions

I Prove that the program implements the algorithm

I Prove that the program satisfies the specification

23/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: CLOCK FUNCTION APPROACH

I Write the program’s specification

I Write the algorithm used in the program

I Prove that the algorithm satisfies the specification

I Define clock functions

I Prove that the program implements the algorithm

I Prove that the program satisfies the specification

23/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: CLOCK FUNCTION APPROACH

I Write the program’s specification

I Write the algorithm used in the program

I Prove that the algorithm satisfies the specification

I Define clock functions

I Prove that the program implements the algorithm

I Prove that the program satisfies the specification

23/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: CLOCK FUNCTION APPROACH

I Write the program’s specification

I Write the algorithm used in the program

I Prove that the algorithm satisfies the specification

I Define clock functions

I Prove that the program implements the algorithm

I Prove that the program satisfies the specification

23/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: CLOCK FUNCTION APPROACH

I Write the program’s specification

I Write the algorithm used in the program

I Prove that the algorithm satisfies the specification

I Define clock functions

I Prove that the program implements the algorithm

I Prove that the program satisfies the specification

23/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: CLOCK FUNCTION APPROACH

I Write the program’s specification

I Write the algorithm used in the program

I Prove that the algorithm satisfies the specification

I Define clock functions

I Prove that the program implements the algorithm

I Prove that the program satisfies the specification

23/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

24/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data

; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations

25/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations

25/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations

25/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations

25/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations

25/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations

25/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

SYMBOLIC EXECUTION IN ACL2

I Symbolic Execution: Executing functions on symbolic
data; can be used as a proof procedure

I GL: verified framework for proving ACL2 theorems
involving finite objects

I Symbolic objects: finite objects represented by boolean
expressions

I Computations involving these symbolic objects done using
verified BDD operations

25/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

DEMO

Automatic correctness proof for an x86 popcount binary
program, for counting the number of non-zero bits in the

bit-level representation of an unsigned integer input.

26/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: SYMBOLIC EXECUTION APPROACH

I Write the program’s specification

I Prove that the program satisfies the specification (fully
automatic)

27/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: SYMBOLIC EXECUTION APPROACH

I Write the program’s specification

I Prove that the program satisfies the specification (fully
automatic)

27/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: SYMBOLIC EXECUTION APPROACH

I No lemma construction needed; proof done fully
automatically

I Reason directly about semantics of programs (+40,000 LoC)

I Proofs of correctness of larger programs to be obtained
compositionally using traditional theorem proving
techniques

28/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: SYMBOLIC EXECUTION APPROACH

I No lemma construction needed; proof done fully
automatically

I Reason directly about semantics of programs (+40,000 LoC)

I Proofs of correctness of larger programs to be obtained
compositionally using traditional theorem proving
techniques

28/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CODE PROOFS: SYMBOLIC EXECUTION APPROACH

I No lemma construction needed; proof done fully
automatically

I Reason directly about semantics of programs (+40,000 LoC)

I Proofs of correctness of larger programs to be obtained
compositionally using traditional theorem proving
techniques

28/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

OUTLINE

INTRODUCTION

RELATED WORK

X86 ISA MODEL

X86 INSTRUCTION INTERPRETER

EXECUTING PROGRAMS ON X86 MODEL

BINARY PROGRAM VERIFICATION

CLOCK FUNCTION APPROACH

SYMBOLIC EXECUTION

CONCLUSION AND FUTURE WORK

29/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CONCLUSION

I Executable, formal model of a significant subset of x86 ISA

I No simplification of the semantics of x86 instructions

I X86 ISA model capable of running and reasoning about
real x86 binary programs

30/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CONCLUSION

I Executable, formal model of a significant subset of x86 ISA

I No simplification of the semantics of x86 instructions

I X86 ISA model capable of running and reasoning about
real x86 binary programs

30/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

CONCLUSION

I Executable, formal model of a significant subset of x86 ISA

I No simplification of the semantics of x86 instructions

I X86 ISA model capable of running and reasoning about
real x86 binary programs

30/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

PAPERS
I [ACL2 Workshop’13]: S. Goel, W. Hunt, and M. Kaufmann

Abstract Stobjs and Their Application to ISA Modeling
I [VSTTE’13]: S. Goel and W. Hunt

Automated Code Proofs on a Formal Model of the X86

31/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

PAPERS
I [ACL2 Workshop’13]: S. Goel, W. Hunt, and M. Kaufmann

Abstract Stobjs and Their Application to ISA Modeling
I [VSTTE’13]: S. Goel and W. Hunt

Automated Code Proofs on a Formal Model of the X86

31/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FUTURE WORK

I Add system calls to enable reasoning about I/O (open,
read, write, etc.)

I Further automate the co-simulation framework
I Automated test case generation
I Enhance GDB mode framework

I Build automated binary program annotation and
instrumentation tools

I Infrastructure for verification of linux utilities like cat and
od

32/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FUTURE WORK

I Add system calls to enable reasoning about I/O (open,
read, write, etc.)

I Further automate the co-simulation framework
I Automated test case generation
I Enhance GDB mode framework

I Build automated binary program annotation and
instrumentation tools

I Infrastructure for verification of linux utilities like cat and
od

32/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FUTURE WORK

I Add system calls to enable reasoning about I/O (open,
read, write, etc.)

I Further automate the co-simulation framework
I Automated test case generation
I Enhance GDB mode framework

I Build automated binary program annotation and
instrumentation tools

I Infrastructure for verification of linux utilities like cat and
od

32/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

FUTURE WORK

I Add system calls to enable reasoning about I/O (open,
read, write, etc.)

I Further automate the co-simulation framework
I Automated test case generation
I Enhance GDB mode framework

I Build automated binary program annotation and
instrumentation tools

I Infrastructure for verification of linux utilities like cat and
od

32/33

INTRODUCTION RELATED WORK X86 ISA MODEL BINARY PROGRAM VERIFICATION CONCLUSION AND FUTURE WORK

A Formal Model of the X86 ISA
for

Binary Program Verification

Shilpi Goel

The University of Texas at Austin

April 2, 2013

33/33

	Introduction
	Related Work
	X86 ISA Model
	X86 Instruction Interpreter
	Executing Programs on X86 Model

	Binary Program Verification
	Clock Function Approach
	Symbolic Execution

	Conclusion and Future Work

