sssss

-y
-
l
Connection--init--Ljava-net-Socket-Ljava-
i £1 £1

Verification Games:
Making software verification fun

Michael D. Ernst

University of Washington

Software engineering
has been wildly successful

Software pervades every aspect of our lives
Try living a day without it!

Software provides the value in our gadgets
Huge economic impact

Increasingly sophisticated functionality
— We always want to do more!

Software engineering is challenging

Mathematics:
* Modeling

* Analysis

A non-ideal component :

People!

Both aspects are + e Turenes
intellectually deep O s ows

@scnnumc OF CIRCUIT

(0

Figure §8. Diagrem of a dasic clrowis,

New slide??

SE has been a huge success — maybe the most
of any computing field

(or just say it!)

SE encompasses technical and psychological/
management [need better word!] boundaries

Hard problems in software engineering

* Choosing modularity and abstractions

* Task breakdown

* Dividing tasks between people and tools

* Transparent vs. powerful tools

* Optimizing intractable problems

* Cooperation, competition, and specialization
* The role of training

* Information overload

* Making SE fun

Angry Birds

HIGHSGOREREAES 0,
SaEG=E (0)

oftware verification

Which is more fun?

* Play games
* Prove your program correct

Crowd-sourced software verification

Goal: Verify software while you wait for the bus
* Make software verification easy and fun
 Make the game accessible to everyone

* Harness the power of the crowd

Programming is like a game

Fun puzzles that compel me to solve them:
* minimize a test case

* fixabug

* create a feature

* refactor

When is it not fun?
What is usability in software engineering?

File Edit View Terminal Help

¢ Intersection factory(Kind kind)

17 (kind == Kind.SUBNETWORK)
TllegalArgunentException(
“intersectionFactory passed Kind.SUBNETWORK. Use subnetworkFacto)

ry instead.");
e if (kind == Kind.NULL TEST)
NullTest () ;

Intersection(kind);
}

public static Subnetwork subnetworkFactory(String methodName)
{

Subnetwork (methodName) ;

* Creates a new Intersection object of the given kind with empty i/0 ports<
/

* Requires:

* kind 1= NULL_TEST;

+ kind 1= SUBNETWORK<

* Subclasses calling this constructor can modify the requires clause by
* overriding checkIntersectionKind

+ @param kind
* The kind of Intersection to create

Code

/
protected Intersection(Kind kind)
{
if (tcheckIntersectionKind(kind)) // if this is not a valid Kind for this|
// implementation of Intersection
@ IllegalArgumentException(*Invalid Intersection Kind " + kind|
+ " for this implementation®);
intersectionkind = kind; inputChutes = ArrayList</* @ullable */Chute
o
outputChutes = new ArrayList</* @lullable */Chute>();

263,10 56%

Highly-skilled,

expensive labor

File Edit View Terminal Help

public static Intersection factory(Kind kind)

Bf (kind = Kind.SUBNETWORK)
throw new IllegalArgumentException(
“intersectionFa

BNETWORK. Use subnetworkFactol

ry instead

e

* Cre i/0 ports<
lbr

* Require:

* kind != N

* kind != Sul

*

* subclasses ca!

* overriding check

uires clause by

* @param kind
* The kind of Intersection to create

*/

protected Intersection(Kind kind)
{

if (IcheckIntersectionKind(kind)) // if this is not a valid Kind for this
// implementation of Intersection
throw new IllegalArgumentException(“Invalid Intersection Kind
+ " for this implementation”);

+ kind|

intersectionkind = kind; inputChutes = new ArrayList</* (MMM */chute

Automatic
translation

Intersection.setOutputChute

Encodes a
constraint

system

Verified software
with proof/
annotations)

outputChutes = new ArrayList</+ [N */Chute>();

230,7 56% |-

Automatic
translation

Completed B

-
game

1

YOU WIN!

Intersection.setOutputChute

L

1

Connection--init--Ljava-net-Socket-Ljava-
|Iffmg-'léreadﬁroup-ILVuIture---V

Connection-run---V Connection Connection-vulture-- Connection-vulture-- Connection-client--
GET SET GET

File Edit View Terminal Help
o/

p ic static Intersection factory(Kind kind) -
{
it (kind == Kind.SUBNETWORK)
IllegalArgumentException(

“intersectionFactory passed Kind.SUBNETWORK. Use subnetworkFacto)

ry instead.");

IR
(kind Kind.NULL_TEST) I
NullTest();
Intersection(kind);
) 1 ’
P tic Subnetwork subnetworkFactory(String methodName)
{
Subnetwork (methodName) ;
y
..

Creates a new Intersection object of the given kind with empty i/o ports

e Automatic J “

kind 1= SUBNETWORK

.
overriding checkIntersectionKind

@param kind
* The kind of Intersection to create

ed Intersection(Kind kind)

Intersection.setOutputChute
(1checkIntersectionkind(kind)) // if this is not a valid Kind for this|
// implementation of Intersection
g IllegalArgunentException(*Invalid Intersection Kind * + kind
+* for this implementation®);

intersectionkind = kind; inputChutes = new Arraylist</* @ullable */Chute|

outputChutes = new ArrayListe/*

ullable */Chute>();

263,10 56%

Free
Highly-skilled, labor
expensive labor

File Edit View Terminal Help

public static Intersection factory(Kind kind)

B 20 — i simeneng Bug detected
throw new IllegalArgumentException(?

"intersectionFactory passed Kind.SUBNETWORK. Use subnetworkFacto|
ry instead.");

else
return new Intersection(kind);

else 1f (kind == Kind.NULL TEST) . CO I I l p I eted
return new NullTest(); n Otl y

w
game

| [
with buzzsaws

YOU WIN!

programmer

Automatic
translation

-~
protected Intersection(Kind kind)
{

if (icheckIntersectionkind(kind)) // if thit
/7 implem
throw new IllegalArgumentException(“Inval

+ " for this implenentation”);

Intersection.setOutputChute

intersectionkind = kind; inputChutes = new /

outputChutes = new ArrayList</* [NEEEENN

Example: encryption

Goal: no cleartext is sent over the network
O
Pipe €<= a variable /

Pipe width €<= narrow: encrypted, wide: cleartext

Ball <> a value
Ball size <> small: encrypted, large: cleartext

Pinch point €< network communication
Unmodifiable pipe/ball <> cleartext from user

Example: null pointer errors

Goal: no dereference of null
O
Pipe €<= a variable /
Pipe width << narrow: non-null, wide: maybe null

Ball €& a value

Ball size €<= small: non-null, large: null

Pinch point <> dereference
Unmodifiable pipe/ball <> literal null

Program € game correspondence

Intuition: dataflow
@)
Pipe €<= a variable /\

Pipe width €= a property of the variable (type)
Ball <> a value ’

Ball size €= a property of the value .

Pinch point <= requirement

Unmodifiable pipe/ball > requirement

Type flow vs. dataflow

 Multiple flows per variable

— A variable’s type may have multiple qualifiers
@Immutable Map<@English String, @ NonNegative Integer>

 Some variables are not represented at all
— primitives (int, ...) when analyzing null pointer errors

* No loops
— If program is verifiable, solvable in polynomial time

— Human leverage: high-level pattern matching,
placement of buzzsaws/casts

More accurate intuition: type constraints
— Solving a game = type inference
— Computers do a poor job

Other examples

SQL injection

unintended side effects

format string and regexp validation
incorrect equality checks

race conditions and deadlocks
units of measurement

aliasing

27 of the CWE/SANS Top 41 Most Dangerous
Software Errors

Type systems for verification

 Modular; local reasoning & understanding

* Equally powerful as any other verification
technology (theorem proving, model checking, ...)

* Less effective for correctness of numerical
computations

* Not good for full functional correctness
* Not good for temporal properties (focus on data)

How do these properties help/hinder the game?

3-way collaboration:
machines, players, verification experts

1. Machines: Inference and optimizations
— Brute force is not feasible for large programs

— Error messages from type inference systems are
poor

2. Players do work that automated tools cannot
— Use intuition & pattern-matching to place cheats

3. Verification experts do work that players
cannot

— Classify un-verifiable code as safe or insecure

Machine optimization

* Simplify the challenge to its essence
— Related to the program/problem duality
* Optimization techniques:
— Abstract interpretation
— Type inference & constraint propagation
— Heuristic solving
* In Pipe Jam:
— Remove multiple pinch points in a row
— Remove pipes that suffer no conflicts
— Set pipes to known values, forbid changes to them

Elide irrelevant information

 Example: primitives (int), when proving lack
of null pointer errors

* Also loses documentation, program context!

* Leave in some easy challenges so players feel
good about progress

Information overload
& relevance

Too much detail: player/user gets distracted

Too little detail: unable to produce useful
result

Example: optimization
Example: hiding details

Avoiding the big picture

Information bar /— Available user messages

Contextual
; L I|2re is 1 new message W e pr 2 Warning hints
tions: Possible null dereference
JActions: Next P

[Condition (drag completed conditions here)

thearray[topofstack--] = null;
topofstack | <= | thearray.length | - [1 "

Possible negative array index

ESC/Java2
Submit | thearray[topofstack--] = null;
|scraten Pad (nolds uniimited fragments) A

warnings
thearray | == | null =

HINT: Check the postconditions for these methods:
(vrorall int 3; [(] topofstack [+ [1 <=1] sa[1]<=] thearray

 StackarsEmpiy0 are underlined
Drag and drop orant ant ;[o] < s ea] e[[roporstace o [-=[] . in red
interface for [iovorsteck [=[1] I ove e aunt recenty Srsertd sten fam e stac
writing clauses

v

, * @exception RuntineException if stack is already empty

Logic Comparison Variables Math Other public void pop() throws RuntimeException

T P o preconsicions Available
o~ Javadocis
lowr); underlined
this.isFull() this. topofstack } .
A | [iie ootscac] in blue
Cl - .‘\\"vl’v\-:lh-‘:r‘ boxes below?
ause

X | topofstack <= thearray.length - 1
feedback

if(|isempty ())
this theArray.lengml tms.:sEmpty()‘ POST: (\res

ult == true) == (this.tgy

>

throw nev RuntimeException("uUn
r op!

this. top() this. topandPop()

thearray[topofstack

Toggled inline
contract

Novice users accomplished more when given less information but given guidance
[“Reducing the barriers to writing verified specifications”, Schiller & Ernst, OOPSLA 2012]

The gaming community

A potentially rich resource
— Angry Birds: 5 million hours of play time per day
— 200,000 cumulative years spent (as of 2011)

How do gaming and developer communities
differ?

Collaboration and competition

Collaboraton:

* Teams solve challenges
— Team scoring

e Share solved levels, scripts
* |Interaction: chats, forums, ...

Competition:
* Leaderboards, badges, challenges

Managing multiple solutions

* A player works on one level at a time
— Score reflects effect on entire game world

— Player can indicate need for changes on a different
level

— Player may accept a reduced score — avoid local
maxima

* A player/team works in its own universe
— Can save, restore, merge
— Best solutions made available to other players

Demo: Traffic Jam

Problem decomposition

Program desigh methodologies:

* Procedural

* Object-oriented

* Functional

* Logic programming

* Design patterns

Lesson from software engineering:

* No one organization is best for all tasks
* Tradeoffs among competing desiderata

GridWorld

* Problem with Classic: action at a distance
— Colored pipes are linked & have the same width
— Represent different uses of the same variable
— Game abstractions are same as the program’s
— Goal: bring information together

Problem: action at a distance

Pipe colors indicate non-local dependences:
uses of the same variable must be consistent

Connectlon--init--Ljava-nZt-Socket-Ljava-

- la . -
D D O O O i EreadGroup ILVulture---V

Organizing a program’s constraints

* Programmer-supplied decomposition

— Classes, methods

— Programmer probably had a good reason

— But: variables & calls cross-cut these structures
* Alternate decomposition:

— Bring together variables, split apart method bodies

Demo: Flow Jam

Just a new skin for the same game

* Pipes = boxes
— One box for arbitrarily many pipes of the same color

* Pipe connections = lines

— Didn’t eliminate action at a distance,
but made it explicit

dentical constraints and XML input file

Player is solving the same problem,
out it feels like a different game

We plan A/B testing

Implications of Grid World’s
variable-oriented layout

* Fewer boards, but bigger ones
— Lots of explicit links
— Layout and navigation are more challenging

* More compact representation
— No traveling balls/cars, no sub-boards
— See more on the screen

* Two game-playing modalities: conflicts, layout

Type inference is challenging

* Example: prove that myMap.get (someKey)

returns a non-null value
(recall: Map.get returns null if the key isn’t in

the map)

— myMap is declared as
Map<KeyType, @NonNull valueType>

— someKey is a key in myMap

 Example: polymorphism (Java generics)

Design goals for
a (software engineering) game

Address a hard problem

Connect players to the real work they are doing
Scale to (and be useful for) real problems

Fun
Use human skills

Minimal distractions from underlying problem

Allow and encourage collaboration

Designing a program analysis

(Examples: model checking, abstract interpretation)
Key problem: the abstraction

e Capture the essence of the problem

* Too much detail: infeasible analysis

* Too little detail: does not prove desired properties

Designer insight and iteration are crucial
Each new successful abstraction is a breakthrough

Designing a machine learner

Key issues:

e Learning algorithm (SVM, decision tree, neural
network, genetic algorithm, ...)

* Feature space (problem representation): the
information fed to the algorithm

State of the art:

* Try lots of algorithms

* Try lots of feature spaces

* When one works, publish it

Designing a (software engineering) game

Goals:

e Address a hard problem
* Use human skills

* Fun

A challenging task with no simple rules
Modularity and abstraction make it even harder

ESP game (image labeling)

taboo words

peace
N b
lay 5

Duolingo (translation)

duolingo

¢cdonde esta la bibliotega?
where is the lirar

ReCAPTCHA (optical character
recognition)

The Norwich line steamboat train, from New-

London for Boston, this ran off the track
seven miles north of New-Londbn.

morning

morping OlveriglRe

Type the two words: CJ
ol Re GAPTCHA

Image segmentation

[~ -
(a) Color Labels (ACA)

(c) Crude Segmentation (d) Final Segmentation

oldit (proteomics)

« 1 - . v Group € atite
Rank: 317 Score: fotp Compatidas
Soko st Beginner Fuzge 8 (<1500 kit Fly I Group Nam

» No ennditione

auta show

B e e 53 t W auta show

S dechains Backoone Sidechains Bends 3ands Alignmeant 5 e @ JUT0 sho'w
A Actiom Jnca P Social P Nades lehn » View P Menu » Natitientions auto show

Shaka wigg 2 VAazle
chalns Al

FoldIt

Proteomics game at UW

Effectively created the genre of games that
solve hard problems

Three Nature papers in under 2 years
Over 240,000 players, 200+ new per day

Comparison of games

m Abstraction? | Modularity?

Image labeling x v
Translation v
OCR x v
Image segmentation x v
Protein folding % X
Type inference v v

Challenge: create more games that are abstract and modular

Abstraction and modularity
in game design

Abstraction
* |sthe player doing the goal task directly?
* In an abstracted game:

— No need for expertise in the problem domain
— No obvious connection to the real-world value

Modularity
e Each player solves part of the overall problem
* The system combines the contributions of different players
* Programs have natural modularity, created by the programmer
In Pipe Jam:
— World = program
— Level =class
— Board = method

Pipe Jam solves multiple problems

Anything that can be expressed as a type system:
* null pointer errors

* encryption

* SQL injection

* unintended side effects

* format string and regexp validation

* incorrect equality checks

* race conditions and deadlocks

* units of measurement

For a new type system:

 Map type system into the Pipe Jam schema

* Convert a program to a game instance

Pipe Jam also contains a layout game (different skill set)

PlayStation.c

One game to rule them all?

Problem reduction:
Many problems can be
converted to SAT

(AvB)A(mAv-Bv-C)Aa(-AvBvC(C

@& Q©)

W/ ANy
0 ’) A
o¥e 5'@ 3:}9

Can we gamify all those problems simultaneously?

Don’t think about SAT

(AvB)A(AVv-Bv-=C)A(-AvBvC(C

... when you play the game C @-@)

VAN
(A) [A X (@A

... when you design the game

Translation to SAT:

* Explodes problem size

* Destroys problem structure, no human intuition

Casual gamers vs. trained experts

With time, players develop unique skills
* A plumber might be a protein-folding savant

Our focus is not on casual gamers

Useful work comes from trained expert players

Human advantage

Do people outperform verification algorithms?

Inference is undecidable (human experts > algorithms)
Hypothesis: no for correct, verifiable programs,

yes for incorrect or unverifiable programs
Location of buzzsaws is key to the whole approach

Game players only have to reduce overall verification
cost, not fully verify the program

Player performs optimization

e Type error (Jam): -75 (or -1000)
 Wide inputs or narrow outputs: +25 (or +10)
* Constant offset to make positive

mfx az satisfied(c,A) + E p.desired(a)+y
ceC ac A

Scoring

Score is influenced by:
e Collisions (verifiability)
e Use of buzzsaws (trusted assumptions)

* Pipe widths, distinguishing input and output pipes
(re-usability of modules)

Multiple solutions may be possible

Score is a proxy for quality of verification result

 Have we just rephrased the hardest question?

* Heuristics & search strategies for an optimization problem
* Discover algorithms that may outperform players

Other games being built

* |nvariant detection (a la Daikon)
* Model checking

* Model merging

* Register allocation

e ...your ideas here!

* These are not my ideas; many come from DARPA’s Crowd-
Sourced Formal Verification Program (Dr. Drew Dean, PM)

Play now at Verigames.com

S BETA | ,
. 2 < You SIGN IN REGISTER Search Members
VERIGAMES

Creating test cases

* Given a solved game,
seek input balls that cause a conflict

 This can be converted to a test case

Other games being built:
* Model checking

* Model merging

* Register allocation

Pipe Jam status

* Prototype exists
— Tested on modest programs (~100,000 lines)
— Players say it is “kind of fun”

 Many challenges remain

— Create tests (example failures, or
counterexamples)

— Scale to multiple players (parallelism, social
aspects)

— Make the game more fun

ela Gamification of SE
Wf % (program verification)

Goal: cheaper verification = more verification

Pipe Jam and Flow Jam games...
— encodes correctness condition
— utilizes physical intuition & human insight
— is playable by anyone

Play at http://verigames.com

Credits

Collaborators on Verification Games project:

Jonathan Barone, Francois Boucher-Genesse, Brian
Britigan, Dan Brown, Jonathan Burke, Matthew
Burns, Craig Conner, Seth Cooper, Werner Dietl,
Stephanie Dietzel, Kate Fisher, Barb Krug, Marianne
Lee, Bryan Lu, David McArthur, Nathaniel Mote,
Zoran Popovic, Tim Pavlik, Tyler Rigsby, Eric Reed,
Eric Spishak, Brian Walker, Konstantin Weitz

Funding: DARPA

Hard problems in software engineering

* Choosing modularity and abstractions

* Task breakdown

e Dividing tasks between people and tools

* Transparent vs. powerful tools

* Optimizing intractable problems

* Cooperation, competition, and specialization
* The role of training

* Information overload

* Making software enigneering fun

Games<—>SE: A useful, if imperfect, analogy
Science benefits from:

* A games perspective on SE

* A SE perspective on games

May apply elsewhere

Disclaimer

This material is based on research sponsored by
Defense Advanced Research Project Agency
(DARPA) under agreement number
FA8750-11-2-0221. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any
copyright notation thereon. The views and
conclusions contained herein are those of the
authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of
Defense Advanced Research Project Agency
(DARPA) or the U.S. Government.

