
An ACL2 Mechanization of an Axiomatic Weak Memory Model

An ACL2 Mechanization of an Axiomatic
Weak Memory Model

Ben Selfridge

February 28, 2014



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Outline

Outline

1 Introduction
Multiprocessor Reasoning
Weak Memory
Goals of this talk

2 An Axiomatic Weak Memory Model
Concurrent Executions
SC-Per-Location

3 ACL2 Mechanization

4 Conclusion



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Outline

1 Introduction
Multiprocessor Reasoning
Weak Memory
Goals of this talk

2 An Axiomatic Weak Memory Model
Concurrent Executions
SC-Per-Location

3 ACL2 Mechanization

4 Conclusion



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Multiprocessor Reasoning

Goal: Analysis of programs written for multiple
processors with a shared memory



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Multiprocessor Reasoning

Two conceivable approaches:

Operational - Create a model of a multiprocessor
machine (e.g. in ACL2) and mechanically prove that
certain properties of the program hold

Use an oracle to model non-determinism of scheduler

Axiomatic - derive a set of mathematical objects from
the program and prove theorems about the structure of
those objects

Both approaches have certain advantages and disadvantages



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Multiprocessor Reasoning

Two conceivable approaches:

Operational - Create a model of a multiprocessor
machine (e.g. in ACL2) and mechanically prove that
certain properties of the program hold

Use an oracle to model non-determinism of scheduler

Axiomatic - derive a set of mathematical objects from
the program and prove theorems about the structure of
those objects

Both approaches have certain advantages and disadvantages



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Multiprocessor Reasoning

Two conceivable approaches:

Operational - Create a model of a multiprocessor
machine (e.g. in ACL2) and mechanically prove that
certain properties of the program hold

Use an oracle to model non-determinism of scheduler

Axiomatic - derive a set of mathematical objects from
the program and prove theorems about the structure of
those objects

Both approaches have certain advantages and disadvantages



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Multiprocessor Reasoning

Two conceivable approaches:

Operational - Create a model of a multiprocessor
machine (e.g. in ACL2) and mechanically prove that
certain properties of the program hold

Use an oracle to model non-determinism of scheduler

Axiomatic - derive a set of mathematical objects from
the program and prove theorems about the structure of
those objects

Both approaches have certain advantages and disadvantages



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Multiprocessor Reasoning

Two conceivable approaches:

Operational - Create a model of a multiprocessor
machine (e.g. in ACL2) and mechanically prove that
certain properties of the program hold

Use an oracle to model non-determinism of scheduler

Axiomatic - derive a set of mathematical objects from
the program and prove theorems about the structure of
those objects

Both approaches have certain advantages and disadvantages



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Operational vs. Axiomatic

Operational semantics have a closer connection to the
actual architecture being modeled, whereas an axiomatic
approach makes a lot of assumptions

Axiomatic models can be easier to reason about; fully
modeling an MP architecture can be messy from a
theorem-proving perspective



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Operational vs. Axiomatic

Operational semantics have a closer connection to the
actual architecture being modeled, whereas an axiomatic
approach makes a lot of assumptions

Axiomatic models can be easier to reason about; fully
modeling an MP architecture can be messy from a
theorem-proving perspective



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Bridging the Gap

How could we “bridge the gap” between these two approaches?

One strategy:

1 As we execute our model (i.e. using an oracle),
simultaneously construct one of these mathematical
objects

2 Demonstrate, for all programs and oracles, any object
produced by such an execution satisfies certain
structural properties

3 To prove a program has property P , show that any
execution of that program that fails to satisfy P will
produce an invalid object



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Bridging the Gap

How could we “bridge the gap” between these two approaches?

One strategy:

1 As we execute our model (i.e. using an oracle),
simultaneously construct one of these mathematical
objects

2 Demonstrate, for all programs and oracles, any object
produced by such an execution satisfies certain
structural properties

3 To prove a program has property P , show that any
execution of that program that fails to satisfy P will
produce an invalid object



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Bridging the Gap

How could we “bridge the gap” between these two approaches?

One strategy:

1 As we execute our model (i.e. using an oracle),
simultaneously construct one of these mathematical
objects

2 Demonstrate, for all programs and oracles, any object
produced by such an execution satisfies certain
structural properties

3 To prove a program has property P , show that any
execution of that program that fails to satisfy P will
produce an invalid object



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Bridging the Gap

How could we “bridge the gap” between these two approaches?

One strategy:

1 As we execute our model (i.e. using an oracle),
simultaneously construct one of these mathematical
objects

2 Demonstrate, for all programs and oracles, any object
produced by such an execution satisfies certain
structural properties

3 To prove a program has property P , show that any
execution of that program that fails to satisfy P will
produce an invalid object



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Multiprocessor Reasoning

Bridging the Gap

How could we “bridge the gap” between these two approaches?

One strategy:

1 As we execute our model (i.e. using an oracle),
simultaneously construct one of these mathematical
objects

2 Demonstrate, for all programs and oracles, any object
produced by such an execution satisfies certain
structural properties

3 To prove a program has property P , show that any
execution of that program that fails to satisfy P will
produce an invalid object



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Weak Memory

Complication: Weak Memory

Practical MP architectures do not satisfy sequential
consistency

Instead, they satisfy some weaker properties

Axiomatic Memory Models attempt to capture the
weaker consistency guarantees of most modern
architectures as axioms



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Weak Memory

Complication: Weak Memory

Practical MP architectures do not satisfy sequential
consistency

Instead, they satisfy some weaker properties

Axiomatic Memory Models attempt to capture the
weaker consistency guarantees of most modern
architectures as axioms



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Weak Memory

Complication: Weak Memory

Practical MP architectures do not satisfy sequential
consistency

Instead, they satisfy some weaker properties

Axiomatic Memory Models attempt to capture the
weaker consistency guarantees of most modern
architectures as axioms



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Goals of this talk

Goal of this talk

What this talk is about:

A partial description of one particular axiomatic memory
framework1

An ACL2 mechanization of this framework

A new proof of a nice equivalence result for this framework,
and a mechanization of this proof

1[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats
- Modelling, simulation, testing, and data-mining for weak memory. To
appear in TOPLAS 2014. http://arxiv.org/abs/1308.6810



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Goals of this talk

Goal of this talk

What this talk is about:

A partial description of one particular axiomatic memory
framework1

An ACL2 mechanization of this framework

A new proof of a nice equivalence result for this framework,
and a mechanization of this proof

1[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats
- Modelling, simulation, testing, and data-mining for weak memory. To
appear in TOPLAS 2014. http://arxiv.org/abs/1308.6810



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Goals of this talk

Goal of this talk

What this talk is about:

A partial description of one particular axiomatic memory
framework1

An ACL2 mechanization of this framework

A new proof of a nice equivalence result for this framework,
and a mechanization of this proof

1[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats
- Modelling, simulation, testing, and data-mining for weak memory. To
appear in TOPLAS 2014. http://arxiv.org/abs/1308.6810



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Introduction

Goals of this talk

Goal of this talk

What this talk is about:

A partial description of one particular axiomatic memory
framework1

An ACL2 mechanization of this framework

A new proof of a nice equivalence result for this framework,
and a mechanization of this proof

1[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats
- Modelling, simulation, testing, and data-mining for weak memory. To
appear in TOPLAS 2014. http://arxiv.org/abs/1308.6810



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Outline

1 Introduction
Multiprocessor Reasoning
Weak Memory
Goals of this talk

2 An Axiomatic Weak Memory Model
Concurrent Executions
SC-Per-Location

3 ACL2 Mechanization

4 Conclusion



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Execution

An execution of a sequential program is a sequence of events
that results from running the program on a particular set of
inputs (or with a particular starting configuration).

How does this translate to concurrent programs?



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Execution

An execution of a sequential program is a sequence of events
that results from running the program on a particular set of
inputs (or with a particular starting configuration).

How does this translate to concurrent programs?



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

With multiple processors, an execution is not necessarily a
linear sequence.

Instead, we represent it as a graph, consisting of a collection of
events with various kinds of directed edges.



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

With multiple processors, an execution is not necessarily a
linear sequence.

Instead, we represent it as a graph, consisting of a collection of
events with various kinds of directed edges.



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Events

Definition

An event is a read or a write.



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Events

Components of an event:

Type (read or write)

Memory location

Value read or written

Process number



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Events

Components of an event:

Type (read or write)

Memory location

Value read or written

Process number



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Events

Components of an event:

Type (read or write)

Memory location

Value read or written

Process number



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Events

Components of an event:

Type (read or write)

Memory location

Value read or written

Process number



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Events

Components of an event:

Type (read or write)

Memory location

Value read or written

Process number



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

Definition

An execution is a tuple (E,po, rf, co), where E is a set of events
and po, rf, and co are relations on E satisfying

po is a total order on events in the same process

co is a total order on writes to the same location

rf is a relation from writes to reads s.t. for each read r,

there is exactly one write w such that w
rf−→ r and

val(w) = val(r)

po is “program order”, co is “coherence order”, rf is
“read-from”



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

Definition

An execution is a tuple (E,po, rf, co), where E is a set of events
and po, rf, and co are relations on E satisfying

po is a total order on events in the same process

co is a total order on writes to the same location

rf is a relation from writes to reads s.t. for each read r,

there is exactly one write w such that w
rf−→ r and

val(w) = val(r)

po is “program order”, co is “coherence order”, rf is
“read-from”



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

Definition

An execution is a tuple (E,po, rf, co), where E is a set of events
and po, rf, and co are relations on E satisfying

po is a total order on events in the same process

co is a total order on writes to the same location

rf is a relation from writes to reads s.t. for each read r,

there is exactly one write w such that w
rf−→ r and

val(w) = val(r)

po is “program order”, co is “coherence order”, rf is
“read-from”



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

Definition

An execution is a tuple (E,po, rf, co), where E is a set of events
and po, rf, and co are relations on E satisfying

po is a total order on events in the same process

co is a total order on writes to the same location

rf is a relation from writes to reads s.t. for each read r,

there is exactly one write w such that w
rf−→ r and

val(w) = val(r)

po is “program order”, co is “coherence order”, rf is
“read-from”



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

Definition

An execution is a tuple (E,po, rf, co), where E is a set of events
and po, rf, and co are relations on E satisfying

po is a total order on events in the same process

co is a total order on writes to the same location

rf is a relation from writes to reads s.t. for each read r,

there is exactly one write w such that w
rf−→ r and

val(w) = val(r)

po is “program order”, co is “coherence order”, rf is
“read-from”



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

Define fr = rf−1 ◦ co to represent a write that must come after a
read

co, rf, and fr are per-location dependencies; they relate events
which occur at the same memory location only



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

Concurrent Executions

Concurrent Executions

Define fr = rf−1 ◦ co to represent a write that must come after a
read

co, rf, and fr are per-location dependencies; they relate events
which occur at the same memory location only



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

SC-Per-Location

Sequential consistency (SC)

Sequential consistency2: “The result of any execution is the
same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its
program.”

In our framework, we interpret this as the condition

acyclic(po∪ co∪ rf ∪ fr)

Modern architectures do not satisfy this constraint.

2[3] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on Computers,
September 1979



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

SC-Per-Location

Sequential consistency (SC)

Sequential consistency2: “The result of any execution is the
same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its
program.”

In our framework, we interpret this as the condition

acyclic(po∪ co∪ rf ∪ fr)

Modern architectures do not satisfy this constraint.

2[3] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on Computers,
September 1979



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

SC-Per-Location

Sequential consistency (SC)

Sequential consistency2: “The result of any execution is the
same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its
program.”

In our framework, we interpret this as the condition

acyclic(po∪ co∪ rf ∪ fr)

Modern architectures do not satisfy this constraint.

2[3] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on Computers,
September 1979



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

SC-Per-Location

SC-Per-Location

Although we don’t usually have full sequential consistency, we
do have an analogous notion that is enforced by most modern
architectures:

acyclic(pol∪ co∪ rf ∪ fr),
where pol is po restricted to events at the same memory
location.

We refer to this condition as SC-Per-Location.



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

SC-Per-Location

SC-Per-Location

Although we don’t usually have full sequential consistency, we
do have an analogous notion that is enforced by most modern
architectures:

acyclic(pol∪ co∪ rf ∪ fr),
where pol is po restricted to events at the same memory
location.

We refer to this condition as SC-Per-Location.



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

SC-Per-Location

SC-Per-Location

SC-Per-Location is equivalent to prohibiting the following five
patterns:

w1

pol
��

r

pol
��

w

pol
��

w2

co
UU

w

fr

VV

r

rf

VV

r

pol
��

w2
rfoo r1

pol
��

w
rfoo

w1

co

==

r2
fr

>>

We formalized SC-Per-Location in ACL2 and proved this
equivalence.



An ACL2 Mechanization of an Axiomatic Weak Memory Model

An Axiomatic Weak Memory Model

SC-Per-Location

SC-Per-Location

SC-Per-Location is equivalent to prohibiting the following five
patterns:

w1

pol
��

r

pol
��

w

pol
��

w2

co
UU

w

fr

VV

r

rf

VV

r

pol
��

w2
rfoo r1

pol
��

w
rfoo

w1

co

==

r2
fr

>>

We formalized SC-Per-Location in ACL2 and proved this
equivalence.



An ACL2 Mechanization of an Axiomatic Weak Memory Model

ACL2 Mechanization

Outline

1 Introduction
Multiprocessor Reasoning
Weak Memory
Goals of this talk

2 An Axiomatic Weak Memory Model
Concurrent Executions
SC-Per-Location

3 ACL2 Mechanization

4 Conclusion



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Conclusion

Outline

1 Introduction
Multiprocessor Reasoning
Weak Memory
Goals of this talk

2 An Axiomatic Weak Memory Model
Concurrent Executions
SC-Per-Location

3 ACL2 Mechanization

4 Conclusion



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Conclusion

Conclusion

We presented a (partial) mechanization in ACL2 of an
axiomatic model of weak memory

This included a new proof of an equivalence theorem

I plan to investigate how this model (or a similar one) can
be used practically for MP code proofs



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Conclusion

Conclusion

We presented a (partial) mechanization in ACL2 of an
axiomatic model of weak memory

This included a new proof of an equivalence theorem

I plan to investigate how this model (or a similar one) can
be used practically for MP code proofs



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Conclusion

Conclusion

We presented a (partial) mechanization in ACL2 of an
axiomatic model of weak memory

This included a new proof of an equivalence theorem

I plan to investigate how this model (or a similar one) can
be used practically for MP code proofs



An ACL2 Mechanization of an Axiomatic Weak Memory Model

Conclusion

References

1. Jade Alglave. A Shared Memory Poetics. Ph.D.
Dissertation. Université Paris 7, 2010.

2. Jade Alglave, Luc Maranget, and Michael Tautschnig.
Herding Cats - Modelling, simulation, testing, and
data-mining for weak memory. To appear in TOPLAS 2014.
http://arxiv.org/abs/1308.6810

3. Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers, C-28(9):690691. September
1979


	Introduction
	Multiprocessor Reasoning
	Weak Memory
	Goals of this talk

	An Axiomatic Weak Memory Model
	Concurrent Executions
	SC-Per-Location

	ACL2 Mechanization
	Conclusion

