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Introduction

M1 is a simple (“toy”) model of the JVM, developed by
Moore to teach formal modeling and mechanized code proof.

Details are in the paper and in ACL2 input scripts distributed
with the ACL2 Community Books (as per the paper).

Feel free to email questions to moore@cs.utexas.edu.



Typical M1 Programming Challenge

Write a program that takes two natural numbers, 2 and 3, In
reg|0] and reg|1] and halts with 1 on the stack if # < j and 0

on the stack otherwise.

Difficulty: The only test in the M1 language is “jump if
top-of-stack equals 0"

Solution: Count both variables down by 1 and stop when one
or the other is 0.



Java Bytecode Solution

ILOAD_1 // 0

IFEQ 12 // 1 if reg[1]1=0, jump to 13;
ILOAD_O // 2

IFEQ 12 // 3 if reg[0]=0, jump to 15;
ILOAD_O // 4

ICONST_1 // 5

ISUB // 6

ISTORE_O // 7 reg[0] := regl0] - 1;
ILOAD_1 // 8

ICONST 1 // 9

ISUB // 10

ISTORE_1 // 11 reg[1] := regll] - 1;
GOTO -12 // 12 jump to O;

ICONST_O // 13

IRETURN // 14 halt with O on stack;
ICONST_1 // 15

IRETURN // 16 halt with 1 on stack;

JVM pcs are byte addresses but instruction counts are shown here



An M1 Programming Solution

»((ILOAD 1) ; O
(IFEQ 12) | if reg[1]=0, jump to 13;
(ILOAD 0) ; 2
(IFEQ 12) ;03 if reg[0]=0, jump to 15;
(ILOAD 0) ;4
(ICONST 1) ; 5
(ISUB) ; 6
(ISTORE 0) ; 7 reg[0] := regl0] - 1;
(ILOAD 1) ; 8
(ICONST 1) ; 9
(ISUB) ; 10
(ISTORE 1) ; 11 reg[l] := regll] - 1;
(GOTO -12) ; 12 jump to 0;
(ICONST 0) ; 13
(HALT) ; 14 halt with O on stack;
(ICONST 1) ; 15
(HALT)) ; 16 halt with 1 on stack;

Call this constant k.
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M1

The M1 state provides

® a program counter

e a fixed (but arbitrary) number of registers whose values are
unbounded integers

e an unbounded push down stack

e a program which is a fixed, finite list of instructions



Each instruction is formalized with a state transition function.

Given a state s and a natural n, we define M1(s,n) to be the
result of stepping n times from s.

It is possible to prove properties of M1 programs, e.g., that s
halts and leaves 1 or 0 on the stack, depending on whether
regl0] < reg[l].

Partial correctness results can be proved too.
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Turing Machines

trace of TMI(st,tape,tm,n)

Description®
tm =x*rogers—-tmx
((Q0 1 0 Q1)

(Q1 0 R Q2)

(Q2 1 0 Q3)

(Q3 0 R Q4)

(4 1 R Q4

(Q4 0 R Q5)

(5 1 R Q5)

(Q5 0 1 Q@6)

(Q6 1 R Q6)

(Q6 0 1 Q7)

(Q7 1 L Q7)

(Q7 0 L Q@8)

(8 1 L Q1)

(Q1 1 L Q1))
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A Theory of recursive functions and effective computability, Hartley Rogers, McGraw-Hill, 1967



A Turing Machine Interpreter in ACL2

final tape if halts within n steps

tmi(st, tape,tm, n) — { nil otherwise

A tape is representated as a pair of extensible half-tapes
< Left, Right >, where the read/write head is at the start of
Right.

A tape is never nil.

The definition of tmi is the ACL2 translation of the definition
of NQTHM's tmi used in [Boyer-Moore 1984].
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Turing Completeness
“M1 can emulate TMI”

Approach: Implement TMI as an M1 program and prove it
correct.

But TMI deals with symbols (e.g., Q1, L, R, etc) and conses
(e.g., machine descriptions and tapes) whereas M1 only has
integers. We must establish a correspondence between the

objects in the TMI and M1 worlds.
The encoding is straightforward “bit packing” into integers.

“M1 can emulate TMI| modulo the correspondence”
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Conventions

Let tm, st, and tape be a Turing machine description, initial
state symbol, and initial tape.

Let W be a certain M1 program constant described below.
Let sg be the M1 state with

e pc =0

e 13 registers, initially containing Os,

e a stack containing (the numeric correspondents of)
tm, st, tape and certain constants used to
decode them, and

® our program W.
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Theorems

Theorem A: If TMI runs forever on st, tape, and tm,
then M1 runs forever on sg.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s( after some k steps and returns the same
tape (modulo correspondence).
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Theorem A: If TMI runs forever on st, tape, and tm,
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Theorems

Theorem A: If TMI runs forever on st, tape, and tm,
then M1 runs forever on sg.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on sg after find-k(st, tape,tm,n) steps and
returns the same tape (modulo correspondence).
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Theorems

Theorem A: If TMI runs forever on st, tape, and tm,
then M1 runs forever on sg.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on s after find-k(st, tape,tm,n) steps and
returns the same tape (modulo correspondence).
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Theorems

Theorem A: If M1 halts on sg after ¢ steps,
then TMI halts on st, tape, and tm after some j steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on sg after find-k(st, tape,tm,n) steps and
returns the same tape (modulo correspondence).
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Theorems

Theorem A: If M1 halts on sy after ¢ steps,
then TMI halts on st, tape, and tm after some j steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on sg after find-k(st, tape,tm,n) steps and
returns the same tape (modulo correspondence).
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Theorems

Theorem A: If M1 halts on sy after ¢ steps,
then TMI halts on st, tape, and tm after find-j(st, tape, tm, i)
steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on sg after find-k(st, tape,tm,n) steps and
returns the same tape (modulo correspondence).
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Theorems

Theorem A: If M1 halts on sy after ¢ steps,
then TMI halts on st, tape, and tm after find-j(st, tape,tm, 1)
steps.

Theorem B: If TMI halts on st, tape, and tm after n steps,
then M1 halts on sq after find-k(st, tape,tm,n) steps and
returns the same tape (modulo correspondence).

Creative Steps:

e reducing TMI to an equivalent “bit-packed” version, TMI3
e defining ¥ and proving it implements TMI3

e defining find-j (to count TMI steps given M1 steps)

See the paper and scripts.

Dealing with ¥ could be tedious!

22



Outline
o M1

e Turing Machines

e Turing Completeness

e Implementation

e Verifying Compiler

e Some Statistics

e Emulating Turing Machines with M1

e Conclusion

23



Implementation ¥ =

((ICONST 2) ; O || (ISUB) ; 19 || (GOTO 15) ; 38 || (GOTO -132) ;877
(GOTO 843) ; 1 || (ILOAD 1) ; 20 || (ISTORE 12) ; 39 || (ISTORE 9) ;878
(HALT) ;2| (ICONST 1) ; 21 || (ISTORE 7) ; 40 || (ISTORE 8) ;879
(ISTORE 12) ; 3 || (ISUB) ; 22 || (ISTORE 6) ; 41 || (ISTORE 7) ;880
(ISTORE 7) ; 4 || (ISTORE 1) ; 23 || (ILOAD 0) ; 42 || (ISTORE 6) ;881
(ISTORE 6) ; 5 || (ISTORE 0) ; 24 || (ILOAD 1) ; 43 || (ISTORE 12) ;882
(ILOAD 0) ; 6 || (GOTO -12) ; 25 || (ILOAD 12) ; 44 || (ISTORE 5) ;883
(ILOAD 1) ; 7 || (ICONST 1) ; 26 || (ILOAD 6) ; 45 || (ISTORE 4) ;884
(ILOAD 12) ; 8 || (GOTO 2) ;27 | ... ... || (ISTORE 3) ;885
(ILOAD 6) ; 9 || (ICONST 0) ; 28 || [824 deletions] || (ISTORE 2) ;886
(ILOAD 7) ; 10 || (ISTORE 6) ; 29 || ... ... || (ISTORE 1) ;887
(ISTORE 1) ; 11 || (ISTORE 12) ; 30 || (ISTORE 0) ;869 || (ISTORE 0) ;888
(ISTORE 0) ; 12 || (ISTORE 1) ; 31 || (ILOAD 0) ;870 || (ILOAD 6) ;889
(ILOAD 1) ; 13 || (ISTORE 0) ; 32 || (ILOAD 1) ;871 || (ILOAD 7) ;890
(IFEQ 14) ; 14 || (ILOAD 6) ; 33 || (ILOAD 2) ;872 || (ILOAD 8) ;891
(ILOAD 0) ; 15 || (ILOAD 12) ; 34 || (ILOAD 3) ;873 || (ILOAD 9) ;892
(IFEQ 10) ; 16 || (ICONST 107); 35 || (ILOAD 4) ;874 || (GOTO -891) ;893
(ILOAD 0) ; 17 || (ISUB) ; 36 || (ILOAD 5) ;875 || (GOTO 0) ;894
(ICONST 1) ; 18 || (IFEQ 70) ; 37 || (ICONST 878);876 || (GOTO 0)) ;895
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If we had some eggs. ..
we could have eggs and ham, ...

If we had some ham. — Groucho Marx
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If we had some eggs. ..
we could have eggs and ham, ...

If we had some ham. — Groucho Marx

If we had M1 code for less than, mod, floor, logs, and
exponentiation, ...

we could write M1 code to decode the bit-packed
description tm and read/write/shift the tape, ...

If we had subroutine call and return.
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Verifying Compiler

To solve these problems, and automate the proofs, we wrote a
verifying compiler from “Toy Lisp” to M1.

It maps a system of Toy Lisp programs and specifications into
M1 code and lemmas to prove that each compiled routine
meets its specifications when called properly.

It supports symbolic names, formal parameters, multiple
return values, and a call/return protocol that protects the
caller's environment.

It generated and verified W above from input like this:
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(defsys

:1d-flg nil

:modules

((lessp :formals (x y)

(mod

cinput (and (natp x)
(natp y))
coutput (if (K x y) 1 0)
:code (ifeq y
0
(ifeq x
1

(lessp (- x 1) (- y 1)))))

:formals (x y)
rinput (and (natp x)

(natp y)
(not (equal y 0)))

routput (mod x y)
:code (ifeq (lessp x y)

(mod (- x y) y)
x))

)

12 modules deleted
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(tmi3

:formals (st tape pos tm w nnil)

:dcls ((declare (xargs :measure (acl2-count n))))

rinput (and (natp st) (natp tape)

(natp pos) (natp tm) (natp w)
(equal nnil (nnil w)) (< st (expt 2 w)))

routput (tmi3 st tape pos tm w n)

:output-arity 4

: code
(ifeq

(- (ninstrl st (current-symn tape pos) tm w nnil) -1)

(mv 1 st tape pos)

(tmi3 (nst-out (ninstrl st (current-symn tape pos) tm w nnil) w)

(new-tape2 (nop (ninstrl st (current-symn tape pos) tm w nnil)
w)
tape pos)
tm w nnil))

:ghost-formals (n)

:ghost-base-test (zp n)

:ghost-base-value (mv O st tape pos)

:ghost-decr ((- n 1)))
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(main

:formals (st tape pos tm w nnil)
:input (and (natp st) (natp tape)

(natp pos) (natp tm) (natp w)
(equal nnil (nnil w)) (< st (expt 2 w)))

routput (tmi3 st tape pos tm w n)
:output-arity 4

:code (tmi3 st tape pos tm w nnil)
:ghost-formals (n)

:ghost-base-value (mv O st tape pos)))

:edit-commands ...) ; user provided hints
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What the Compiler Generates

(lessp :formals (x y)
rinput (and (natp x) (natp y))
coutput (if (< x y) 1 0)
rcode (ifeq y O (ifeq x 1 (lessp (- x 1) (- y 1)))))

e M1 code for :code in W (incl call/return support)
e clock function (number of steps from call through ret)
e algorithm function, 'LESSP (ACL2 translation of Toy Lisp)

e proof that code implements algorithm:
“good call leaves !'LESSP(x,y) on stack”

e proof that algorithm implements :input/:output spec:
“ILESSP(x,y) is (if (< x y) 1 0)"
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M1 Code for LESSP (within V)

| (ICONST 1) ; 21 color coding
(ISTORE 12) ; 3 || (ISUB) ; 22 || entry prelude
(ISTORE 7) ; 4 || (ISTORE 1) ; 23 | loop
(ISTORE 6) ; 5 || (ISTORE 0) ; 24 || exit postlude - restoring regs
(ILOAD 0) ; 6 || (GOTO -12) ; 25 || exit postlude - returning
(ILOAD 1) ; 7 || (ICONST 1) ; 26 ||
(ILOAD 12) ; 8 || (GOTO 2)  ; 27 |
(ILOAD 6) ; 9 || (ICONST 0) ; 28 ||
(ILOAD 7) ; 10 || (ISTORE 6) ; 29 ||

(ISTORE 1) ; 11 || (ISTORE 12) ; 30 |
(ISTORE 0) ; 12 || (ISTORE 1) ; 31 |

(ILOAD 1) ; 13 || (ISTORE 0) ; 32 ||
(IFEQ 14) ; 14 || (ILOAD 6) ; 33 ||
(ILOAD 0) ; 15 || (ILDAD 12) ; 34 ||
(IFEQ 10) ; 16 || (ICONST 107); 35 ||
(ILOAD 0) ; 17 || (ISUB) ;36 ||
(ICONST 1) ; 18 || (IFEQ 70) ; 37 ||
(ISUB) ; 19 || (GoTO 15) ; 38 |

(ILOAD 1) ; 20 || ...
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Defs of Clock and Algorithm Functions

(DEFUN LESSP-CLOCK (RET-PC X Y)

(CLK+ 10 ; cost of entry
(LESSP-LOOP-CLOCK X Y) ; cost of loop
4 ; cost of restoring regs
1 ; cost of returning to right place

(EXIT-CLOCK ’LESSP RET-PC)))

(DEFUN !LESSP (X Y)

(IF (AND (NATP X) (NATP Y)) ; :input pre-condition
(IF (EQUAL Y 0) ; Toy Lisp :code trans’d to ACL2
0
(IF (EQUAL X 0)
1

(ILESSP (- X 1) (- Y 1))
NIL)) ; Don’t-care value
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Thm: Code Implements Semantics

(IMPLIES
(AND
(READY-AT *LESSP* (LOCALS S) 3 S) ; well-formed call stack
(MEMBER (CDR (ASSOC CALL-ID *ID-TO-LABEL-TABLE*)) ; this call known
(CDR (ASSOC ’LESSP *SWITCH-TABLE*))) ;  to compiler
(EQUAL (TOP (STACK S)) ; top of stack is ret pc
(FINAL-PC ’LESSP CALL-ID)) ;  for this call
(EQUAL Y (TOP (POP (STACK S)))) ; actuals on rest
(EQUAL X (TOP (POP (POP (STACK $5))))) ; of stack
(AND (NATP X) (NATP Y))) ; pre-conditions ok
(EQUAL (M1 S (LESSP-CLOCK CALL-ID X Y)) ; running for clock steps
(MAKE-STATE ; produces a state with
(TOP (STACK S)) ; pc set to ret pc
(UPDATE-NTH* O ; restored locals
(LIST (NTH O (LOCALS 8)) ... (NTH 5 (LOCALS S)))
(LESSP-FINAL-LOCALS CALL-ID X Y S))
(PUSH (!'LESSP X Y) ;  alg value pushed
(POPN 3 (STACK S))) ;  after popping actuals

(PSI)))) ; our program W
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Thm: Semantics Implements Spec

(IMPLIES (AND (NATP X) (NATP Y))
(EQUAL (!'LESSP X Y)
(IF (< XY) 1 0)))

; ‘input pre-condition implies
; semantic function =
, .output spec

The compiler fails unless all defuns are accepted and all
theorems are proved.
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Ghost Parameters

Two Toy Lisp programs, TMI3 and MAIN, describe algorithms
— and generate compiled code — that may not terminate.

Their translations to ACL2 (!TMI3 and !MAIN) must be total.

The ghost parameters insure termination of the ACL2
functions used to express the programs’ correctness.

See the paper.
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Some Statistics

The M1 Turing Machine Interpreter uses 13 registers, 16
subroutines, and 896 M1 instructions.

book (i.e., file) defun defthm defconst in-theory time
ml 29 10 0 5 1.12
tmi-reductions 56 92 2 6 88.40
defsys-utilities 4 21 0 2 0.42
defsys 54 0 0 0 0.87
implementation 1 10 0 5 2.82
autogenerated 94 31 108 33 68.28
theorems—-a-and-b 15 37 0 6 16.25
find-k! 34 67 0 34 29.75
totals 287 318 110 91 207 .91

Proof times in seconds on Macbook Pro 2.6GHz Intel Core i7
running CCL. Total proof time is about 3.5 minutes.
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Emulating Turing Machines with M1

Given our constructive clocks, we can determine, for any
Turing Machine test run (description tm, initial st, tape, and
number of steps), how many M1 instructions it will take.

Recall *rogers-tm* (slide 10) on the tape (1 1 1 1 1)
takes 78 steps to compute the tape

(0000001111111 1)

M1 requires
(find-k ’Q0 *example-tape* *rogers—-tm* 78)

So how many steps is that?

41



Emulating Turing Machines with M1

Given our constructive clocks, we can determine, for any
Turing Machine test run (description tm, initial st, tape, and
number of steps), how many M1 instructions it will take.

Recall *rogers-tm* (slide 10) on the tape (1 1 1 1 1)
takes 78 steps to compute the tape

(0000001111111 1)

M1 requires

(find-k ’Q0 *example-tape* *rogers—tm* 78) =
291202253588734484219274297505568945357129888612375663883
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(find-k ’Q0 *example-tape* *rogers—tm* 78) =
291202253588734484219274297505568945357129888612375663883

~ 10°% steps!

We can compute this efficiently because of theorems proved in
find-k!, where each clock function is shown equivalent to an
algebraic expression.

Good News: ACL2 can execute M1 programs at about
500,000 bytecode instructions/second!

Bad News: It would take about 1.8 x 10*? years to emulate
this Turing machine run!
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Emulating Turing Machines with M1
Why so long?

M1 is using repeated subtractions of 1 and 2 to recover bits
from large (e.g., 50 digit) numbers encoding tm!

It would be much faster if M1 had more arithmetic primitives
(IFLT, RSH, MOD)

It would be a little faster if M1 had JSR and RET.
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Conclusion
This project demonstrates that we can reason about
computations that are impractical to carry out!

This is only the second mechanically checked Turing Complete
proof Moore knows. The other is [Boyer-Moore 1984| which
used the same TMI.

This is the first one for a Von Neumann machine model.
It requires some coding skills and layered abstractions.

The 896 instruction M1 program is the largest M1 program
Moore has verified.

This project shows that clock functions facilitate certain kinds
of proofs.

46



