ACL2(r) Mechanized Proof of the
Orthogonality Relations of
Trigonometric Functions Using
Non-Standard Analysis

Cuong Chau

Agenda

Introduction
Warm-Up Exercise

ACL2(r) Mechanized Proof of the Orthogonality
Relations of Trigonometric Functions

Conclusion and Future Directions

Agenda

Introduction
Warm-Up Exercise

ACL2(r) Mechanized Proof of the Orthogonality
Relations of Trigonometric Functions

Conclusion and Future Directions

Introduction

* The orthogonality relations of trigonometric
functions.

5 x \. ([& 0,ifm=nvm=n=0
fSlIl m—Xxi|SINnjin—x |dx = -«
-L

L L L, itm=n=0
0, ifm=n
y T T
fcos(mzx)cos(nzx)dx=< L,itm=n=0
-k 2L, iftm=n=0

" T T
fsm(m—x)cos(n—x)dx =0
v L L

Introduction

* The orthogonality relations of trigonometric
functions (when L = mt).

7T if — =
fsin(mx)sin(nx)dx=< O, im=nvm=n=0

a,ifm=n=0

0, ifm=n

f cos(mx)cos(nx)dx=3 mw, tm=n=0

-7 2, 1ftm=n=0

jsin(mx) cos(nx)dx =0

Introduction

 The orthogonality relations of trigonometric
functions play an important role in Fourier series
analysis.

* They are often used to determined the Fourier
coefficients of periodic functions.

* Lack of ACL2 mechanized proofs of these properties

limits ACL2 for reasoning about Fourier series
properties.

Introduction

 We present an ACL2(r) mechanized proof of these
orthogonality relations using the Second
Fundamental Theorem of Calculus (FTC-2).

* The proof procedure can also be applied to compute
the definite integral of any real-valued continuous
function f defined on an interval [a, b], even when f
contains free variables.

Defun-std

e Syntaxis like defun:
(defun-std f (x1 ... xn)
<body>)
* Proof obligation for the above defun-std form:
(implies (and (standardp x1) ... (standardp xn))
(standardp <body>))
Note that <body> does not need to be classical!
 Axiom added for the above defun-std form:
(implies (and (standardp x1) ... (standardp xn))
(equal (f x1 ... xn)
<body>))

Defthm-std

* The transfer principle is implemented in ACL2(r) with
defthm-std.

(defthm-std name <body>) ; optionally, :hints etc.

— Apply if the <body> is classical. Before attempting the proof,
ACL2(r) adds a hypothesis of (standardp x) for all variables x
in the <body>:

(implies (and (standardp x1) (standardp x2) ... (standardp xk))
<body>)

— Also apply to prove that a classical function returns standard
values with standard inputs. Formally, if f is classical,

(defthm-std name
(implies (and (standardp x1) (standardp x2) ... (standardp xk))
(standardp (f x1 x2 ... xk))))

9

Agenda

Introduction
Warm-Up Exercise

ACL2(r) Mechanized Proof of the Orthogonality
Relations of Trigonometric Functions

Conclusion and Future Directions

10

Warm-Up Exercise

 Theorem: For all infinitesimal real numbers x, sin(x)/x
is infinitesimally close (i-close) to 1.

* Approach: Using Taylor series expansion of the sine
function.

* This exercise helped me learn how to apply the

transfer principle in non-standard analysis into my
proof.

11

Warm-Up Exercise

Theorem: For all infinitesimal real numbers x, sin(x)/x
is infinitesimally close (i-close) to 1.

Approach: Using Taylor series expansion of the sine
function.

This exercise helped me learn how to apply the
transfer principle in non-standard analysis into my
proof.

Key lemma: For all real numbers x,
sin(x) - x| = x* when |x| = ¢ for some constant ¢

(c =2 in my proof)

12

Warm-Up Exercise

* Taylor series expansion of the sine function

. o~ (=1)f x X x
sm(x)=z() e x4

k=0

e ACL2(r): For all standard real numbers x,

. i-large-integer (_l)k -
sin(x) = standard-part E X

~ (2k+1)!

3 5 7
Estandard—part(x—x f 2 +)

31 5t 7!

— + ...
2k +1)! 3151 7!

13

Warm-Up Exercise

* For all standard real numbers x,

3 5 7
X X X

+———+
3! 5t 7!

sin(x) — x = standard-part (x —

3 5 7
X X X

= standard—part(— +

-—+
3! 5 7!

14

Warm-Up Exercise

* For all standard real numbers x,

- —+
31 51 7!

3 5 7
. X x0 X
sin(x) — x = standard-part (x ——+) —X

= standard—part(— +

3
X

= ‘sin(x) — x‘ < 2

3 5 7
X X X)

- —+..
31 5t 7!

< x” when |x|=2 (¥)

e By the transfer principle, (*) is also true for all real

numbers X.

15

Warm-Up Exercise
* For all standard real numbers x,

sin(x)—x

sin(x) _,

X

= —|x|=

X

:Oz—‘x‘s

sin(x)

— zl

X

sin(x)

< x> when ‘x‘ <2 (%)

s‘x‘ when 0 <‘x‘52

—1s‘x‘ When0<‘x‘32

sin(x C e
(x) ~-1< ‘x‘ ~ () when x 1s infinitesimal
X

when x 1s infinitesimal (Q.E.D.)

16

Agenda

* ACL2(r) Mechanized Proof of the Orthogonality
Relations of Trigonometric Functions

17

FTC-2

e |ff is areal-valued continuous function on [a, b] and the
derivative of a real-valued function f is f’ on [a, b], then

[f1(x)dx=f(b)- f(a)
* Goal: Apply FTC-2 to compute

}sin(mx) sin(nx)dx,
jcos(mx) cos(nx)dx,

}sin(mx) cos(nx)dx

Proof Procedure

f’ returns real values on [a, b].
f" is continuous on [a, b].

Specifying the real-valued antiderivative f of ' and
proving that f’ is the derivative of f on [a, b].

Defining the Riemann integral of f’ on [a, b].

Functionally instantiating the FTC-2 to compute the
integral of f" over [a, b].

19

Proof Procedure

* Specifying the real-valued antiderivative f of f and
proving that f’ is the derivative of f on [a, b].

20

Derivative and Antiderivative

e Specifying the antiderivative of a function via some
symbolic mathematics system. E.g., Wolfram Alpha.

* In non-standard analysis, showing that f’ is the
derivative of f is equivalent to prove the following
formula:

SO -fO)
X=Y
where standardp(x)Ax=yAx =y

~ }'(x)

21

Defderivative

 The macro defderivative, written by Peter Reid and
Ruben Gamboa [1], computes the derivative f’ of a
function f automatically using symbolic
differentiation. It also introduces the theorem
showing that ' is, in fact, the derivative of f.

[1] P. Reid and R. Gamboa. Automatic differentiation in
ACL2. In Proc of the Second Conference on Interactive
Theorem Proving (ITP-2011), 2011.

22

Defderivative

* Demo.

e Constraints when submitting a defderivative event to
ACL2(r):
— Use the symbol x as the name of the variable with respect
to which the (partial) derivative is computed.

— Do not use the symbol y as the name of any variable in the
function. Defderivative already reserved this symbol.

23

Def-elem-derivative

e Users can register functions with known derivatives
to defderivative via the macro def-elem-derivative

[1].
* Limitation: def-elem-derivative does not support
partial derivative registrations.

[1] P. Reid and R. Gamboa. Automatic differentiation in
ACL2. In Proc of the Second Conference on Interactive
Theorem Proving (ITP-2011), 2011.

24

Proof Procedure

f’ returns real values on [a, b].
f" is continuous on [a, b].

Specifying the real-valued antiderivative f of f and
proving that f’ is the derivative of f on [a, b].

Defining the Riemann integral of f’ on [a, b].

Functionally instantiating the FTC-2 to compute the
integral of f’ over [a, b].

25

Riemann Integral

 The Riemann integral of a function f on an interval [a, b] is the
limit of the Riemann sum of f when partitioning [a, b] into
extremely small subintervals.

* In non-standard analysis, the Riemann integral is the standard
part of the Riemann sum when partitioning [a, b] into
infinitesimal subintervals.

(defun-std riemann-integral-f-prime (a b)
(if (< a b)
(standard-part (riemann-sum-f-prime (small-partition a b)))
0))

* Proof obligation: the Riemann sum is limited when a and b are
standard.

26

Riemann Integral

* Fact: Ruben Gamboa proved that the Riemann sum of
any real-valued continuous unary function over a finite
interval [a, b] is limited.

 Question: Can we apply this fact to prove for the case of
functions of more than one variable (i.e., functions
contain free variables) using functional instantiation?

27

Riemann Integral

* Fact: Ruben Gamboa proved that the Riemann sum of
any real-valued continuous unary function over a finite
interval [a, b] is limited.

 Question: Can we apply this fact to prove for the case of
functions of more than one variable (i.e., functions
contain free variables) using functional instantiation?
No. Because the theorem we try to prove is non-classical
and the functions we try to instantiate are classical [2].

[2] R. Gamboa and J. Cowles. Theory Extension in
ACL2(r). In Journal of Automated Reasoning, 2007.

28

Functional Instantiation

Example: Given an arbitrary classical function f(x), it
follows that

standardp(x) => standardp(f(x))

If we substitute A(x).(x + y) into this theorem, we would
conclude that

standardp(x) => standardp(x + y)
But this is false!

29

Riemann Integral

Fact: Ruben Gamboa proved that the Riemann sum of
any real-valued continuous unary function over a finite
interval [a, b] is limited.

Question: Can we apply this fact to prove for the case of
functions of more than one variable (i.e., functions
contain free variables) using functional instantiation?
No. Because the theorem we try to prove is non-classical
and the functions we try to instantiate are classical [2].

Solution: Prove from scratch!

30

Proof Idea

* Prove that f’ is bounded on [a, b] by limited values.
f min<f <f _max
where f_min and f*_max are limited.
 Then, (b—a)*f'_min < Riemann_sum_f < (b —a)*f'_max
* Given that a and b are standard, the Riemann_sum_f"is

bounded on [a, b] by limited values. By the squeeze
theorem, the Riemann_sum_f’ is also limited.

Proof Procedure

f’ returns real values on [a, b].
f" is continuous on [a, b].

Specifying the real-valued antiderivative f of f and
proving that f’ is the derivative of f on [a, b].

Defining the Riemann integral of f’ on [a, b].

Functionally instantiating the FTC-2 to compute the
integral of f" over [a, b].

32

Functional Instantiation of FTC-2

* Fact: Ruben Gamboa proved the FTC-2 for any real-
valued continuous unary function defined on an interval
[a, b].

* Question: Can we apply this fact to prove for the case of

functions of more than one variable (i.e., functions
contain free variables) using functional instantiation?

33

Functional Instantiation of FTC-2

* Fact: Ruben Gamboa proved the FTC-2 for any real-
valued continuous unary function defined on an interval
[a, b].

* Question: Can we apply this fact to prove for the case of
functions of more than one variable (i.e., functions
contain free variables) using functional instantiation?
Yes. Free variables are allowed to appear in functional
instantiations if the theorem we try to prove and the
functions we try to instantiate are all classical [2].

[2] R. Gamboa and J. Cowles. Theory Extension in
ACL2(r). In Journal of Automated Reasoning, 2007.

34

Functional Instantiation of FTC-2

Fact: Ruben Gamboa proved the FTC-2 for any real-
valued continuous unary function defined on an interval
[a, b].

Question: Can we apply this fact to prove for the case of
functions of more than one variable (i.e., functions
contain free variables) using functional instantiation?
Yes. Free variables are allowed to appear in functional
instantiations if the theorem we try to prove and the
functions we try to instantiate are all classical [2].

How? Use an “encapsulate trick” with zero-arity
functions representing free variables. Demo.

35

Encapsulate Trick

Step 1: Define an encapsulate event that introduces
zero-arity classical functions representing free variables.

Step 2: Prove that the zero-arity functions return
standard values (use defthm-std).

Step 3: Prove the main theorem but replacing the free
variables with the zero-arity functions introduced in step
1. Without free variables, the functional instantiation can
be applied straightforwardly.

Step 4: Prove the main theorem by functionally
instantiating the zero-arity functions in the lemma
proved in step 3 with free variables.

36

Proof Procedure

f’ returns real values on [a, b].
f" is continuous on [a, b].

Specifying the real-valued antiderivative f of ' and
proving that f’ is the derivative of f on [a, b].

Defining the Riemann integral of f’ on [a, b].

Functionally instantiating the FTC-2 to compute the
integral of f" over [a, b].

Agenda

Introduction
Warm-Up Exercise

ACL2(r) Mechanized Proof of the Orthogonality
Relations of Trigonometric Functions

Conclusion and Future Directions

38

Conclusion and Future Directions

The proposed proof procedure can also be applied to compute
the definite integral of any real-valued continuous function f’
defined on an interval [a, b], even when f' contains free
variables.

The derivative can be computed automatically by the
automatic differentiator defderivative. However, users cannot
register partial derivatives to the automatic differentiator.
Could we extend it?

Still remain a couple of proof obligations in the proposed proof
procedure that need to be proved manually. Could we build a
symbolic integrator?

At some point, we would like to use ACL2(r) to verify properties
of some physical systems, e.g, computer controlled systems.

39

References

[1] P. Reid and R. Gamboa. Automatic differentiation
in ACL2. In Proc of the Second Conference on
Interactive Theorem Proving (ITP-2011), 2011.

[2] R. Gamboa and J. Cowles. Theory Extension in
ACL2(r). In Journal of Automated Reasoning, 2007.

[3] P. Reid and R. Gamboa. Implementing an
Automatic Differentiator in ACL2. In ACL2
Workshop, 2011.

[4] R. Gamboa. Mechanically Verifying Real-Valued
Algorithms 1n ACL2. Ph.D. thesis, The University of
Texas at Austin, 1999.

Questions!

