
1/22

AVATAR: A SAT-based Architecture
for First-Order Theorem-Provers

Marijn J.H. Heule
marijn@cs.utexas.edu

ACL2 Seminar, February 17, 2015

adaptation of a CAV’14 talk by Andrei Voronkov



2/22

AVATAR

Advanced
Vampire
Architecture for
Theories
And
Resolution

Definitions of Avatar from various dictionaries:
I Science Fiction: a hybrid creature,
composed of human and alien DNA and
remotely controlled by the mind of a
genetically matched human being

I Hindu Mythology: the descent of a deity
to the death in an incarnate form of
some manifest shape; the incarnation of
a god

I Automated Reasoning: a SAT solver
embodied in a first-order theorem prover
and in fact controlling its behavior



2/22

AVATAR

Advanced
Vampire
Architecture for
Theories
And
Resolution

Definitions of Avatar from various dictionaries:

I Science Fiction: a hybrid creature,
composed of human and alien DNA and
remotely controlled by the mind of a
genetically matched human being

I Hindu Mythology: the descent of a deity
to the death in an incarnate form of
some manifest shape; the incarnation of
a god

I Automated Reasoning: a SAT solver
embodied in a first-order theorem prover
and in fact controlling its behavior



2/22

AVATAR

Advanced
Vampire
Architecture for
Theories
And
Resolution

Definitions of Avatar from various dictionaries:
I Science Fiction: a hybrid creature,
composed of human and alien DNA and
remotely controlled by the mind of a
genetically matched human being

I Hindu Mythology: the descent of a deity
to the death in an incarnate form of
some manifest shape; the incarnation of
a god

I Automated Reasoning: a SAT solver
embodied in a first-order theorem prover
and in fact controlling its behavior



2/22

AVATAR

Advanced
Vampire
Architecture for
Theories
And
Resolution

Definitions of Avatar from various dictionaries:
I Science Fiction: a hybrid creature,
composed of human and alien DNA and
remotely controlled by the mind of a
genetically matched human being

I Hindu Mythology: the descent of a deity
to the death in an incarnate form of
some manifest shape; the incarnation of
a god

I Automated Reasoning: a SAT solver
embodied in a first-order theorem prover
and in fact controlling its behavior



2/22

AVATAR

Advanced
Vampire
Architecture for
Theories
And
Resolution

Definitions of Avatar from various dictionaries:
I Science Fiction: a hybrid creature,
composed of human and alien DNA and
remotely controlled by the mind of a
genetically matched human being

I Hindu Mythology: the descent of a deity
to the death in an incarnate form of
some manifest shape; the incarnation of
a god

I Automated Reasoning: a SAT solver
embodied in a first-order theorem prover
and in fact controlling its behavior



3/22

Summary

I Original motivation: problems having clauses containing
propositional variables and other clauses that can split into
components with disjoint sets of variables.

I Previously: splitting.
I New architecture: a first-order theorem-prover tightly
integrated with a SAT or an SMT solver.

I Future: reasoning with both quantifiers and theories.



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT
Solve!



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT
model {a, b, c , d , e, f }



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT

(ā ∨ c̄ ∨ d̄ ∨ f̄ ) (contradiction clause)



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT
Solve!



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT
model {ā, g , h, i , j , k , l}



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT

(h̄ ∨ j̄ ∨ k̄ ∨ l̄) (contradiction clause)



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT

The loop terminates when either the SAT solver reports
UNSAT or the model satisfies the original problem.



4/22

Context: Solve a Problem Abstraction using a SAT Solver

Counter-Example Guided Abstraction Refinement (CEGAR):
Only translate a subset of the constraints into SAT.

Satisfiability Modulo Theories (SMT):
Combine a SAT solver with theory solvers.

CEGAR
or SMT

SAT

The loop terminates when either the SAT solver reports
UNSAT or the model satisfies the original problem.

Can this architecture be used for first-order theorem provers?



5/22

Saturation Algorithms in First-Order Theorem-Provers

A formula F is saturated with respect to an inference system I
if for every inference in I with premises in F the conclusion of
the inferences is in F as well (or subsumed by a clause in F).

Typically three kinds of inferences:
I Generation: add new clauses to the formula (resolution);
I Simplification: simplify clauses with existing clauses
(self-subsumption);

I Deletion: remove clauses from the formula (subsumption).

Possible outcomes of a saturation algorithms:
I if the empty clause is derived, then F is unsatisfiable;
I if saturation terminates, then F is satisfiable;
I if saturation runs , then F is .



5/22

Saturation Algorithms in First-Order Theorem-Provers

A formula F is saturated with respect to an inference system I
if for every inference in I with premises in F the conclusion of
the inferences is in F as well (or subsumed by a clause in F).

Typically three kinds of inferences:
I Generation: add new clauses to the formula (resolution);
I Simplification: simplify clauses with existing clauses
(self-subsumption);

I Deletion: remove clauses from the formula (subsumption).

Possible outcomes of a saturation algorithms:
I if the empty clause is derived, then F is unsatisfiable;
I if saturation terminates, then F is satisfiable;
I if saturation runs , then F is .



5/22

Saturation Algorithms in First-Order Theorem-Provers

A formula F is saturated with respect to an inference system I
if for every inference in I with premises in F the conclusion of
the inferences is in F as well (or subsumed by a clause in F).

Typically three kinds of inferences:
I Generation: add new clauses to the formula (resolution);
I Simplification: simplify clauses with existing clauses
(self-subsumption);

I Deletion: remove clauses from the formula (subsumption).

Possible outcomes of a saturation algorithms:
I if the empty clause is derived, then F is unsatisfiable;
I if saturation terminates, then F is satisfiable;
I if saturation runs forever, then F is satisfiable.



5/22

Saturation Algorithms in First-Order Theorem-Provers

A formula F is saturated with respect to an inference system I
if for every inference in I with premises in F the conclusion of
the inferences is in F as well (or subsumed by a clause in F).

Typically three kinds of inferences:
I Generation: add new clauses to the formula (resolution);
I Simplification: simplify clauses with existing clauses
(self-subsumption);

I Deletion: remove clauses from the formula (subsumption).

Possible outcomes of a saturation algorithms:
I if the empty clause is derived, then F is unsatisfiable;
I if saturation terminates, then F is satisfiable;
I if saturation runs too long, then F is unknown.



6/22

FLoC Olympic Games

FLoC
Olympic
Games
2014

I CASC (FO solvers versus FO solvers)
I SAT (SAT solvers versus SAT solvers)
I SMT (SMT solvers versus SMT solvers)
I . . .

Why not FO solvers versus SAT solvers ???



6/22

FLoC Olympic Games

FLoC
Olympic
Games
2014

I CASC (FO solvers versus FO solvers)
I SAT (SAT solvers versus SAT solvers)
I SMT (SMT solvers versus SMT solvers)
I . . .

Why not FO solvers versus SAT solvers ???



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x ∨ y)
(x ∨ ȳ)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x ∨ y)
(x ∨ ȳ)

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x ∨ y)
(x ∨ ȳ)

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)
∅ | x (decide)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x ∨ y)
(x ∨ ȳ)

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)
∅ | x (decide)
∅ | x (unit propagation)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

subsumption

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)
∅ | x (decide)
∅ | x (unit propagation)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ y)
(x̄ ∨ ȳ)

(x) (resolution)
(y) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ ȳ)
subsumption

(x) (resolution)
(y) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ ȳ)
(x) (resolution)
(y) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x̄ ∨ ȳ)
(x) (resolution)
(y) (resolution)
(ȳ) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

subsumption
(x) (resolution)
(y) (resolution)
(ȳ) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x) (resolution)
(y) (resolution)
(ȳ) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



7/22

Saturation Algorithms versus SAT (CDCL) solvers

Resolution prover:

(x) (resolution)
(y) (resolution)
(ȳ) (resolution)
(∅) (resolution)

SAT solver:

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) (conflict clause)
∅| x (unit propagation)

SAT solver won!SAT solver won!



8/22

Search Space in Saturation Algorithms (1)

Illustrated using bacteria.

In the beginning . . .

(x ∨ y) (x ∨ ȳ) (x̄ ∨ y) (x̄ ∨ ȳ)

precisionnutrition.com



8/22

Search Space in Saturation Algorithms (1)

Illustrated using bacteria. In the beginning . . .

(x ∨ y) (x ∨ ȳ) (x̄ ∨ y) (x̄ ∨ ȳ)

precisionnutrition.com



9/22

Search Space in Saturation Algorithms (2)
After a few steps . . .

www.nrcs.usda.gov



9/22

Search Space in Saturation Algorithms (2)
After a few steps . . . and notice long clauses

(a
∨
b
∨
c
∨
d
∨
e
∨
f
)

www.nrcs.usda.gov



9/22

Search Space in Saturation Algorithms (2)
After a few steps . . . and notice long clauses

RAM

(a
∨
b
∨
c
∨
d
∨
e
∨
f
)

www.nrcs.usda.gov



10/22

Search Space in Saturation Algorithms (3)
After a few more steps . . .

creepypasta.wikia.com



11/22

Reality of First-Order Theorem Proving

I Growing search spaces
I Repeated applications of algorithms whose complexity
depends on clause sizes: resolution, superposition,
demodulation, Knuth-Bendix order comparison,
subsumption.

I Long clauses are a problem: produce even longer clauses;
subsumption is NP-complete.



12/22

Long Clauses: Resolution
Example: resolving

p(x , f (y)) ∨ p(f (x), y) ∨ p(g(x , z), f (f (y))) ∨ p(f (y), z) ∨
p̄(g(z , z), g(y , f (x)) ∨ p(f (a, x), g(z , g(y , z))) ∨ p̄(x , y)

against

p̄(f (w), v) ∨ p(f (v),w) ∨ p(g(v , u), f (f (w))) ∨ p(f (w), u) ∨
p̄(g(u, u), g(w , f (v))) ∨ p(f (a, v), g(u, g(w , u))) ∨ p̄(v ,w)

gives

p(f (f (w)), y) ∨ p(g(f (w), z), f (f (y))) ∨ p(f (y), z) ∨
p̄(g(z , z), g(y , f (f (w))) ∨ p(f (a, f (w)), g(z , g(y , z))) ∨
p̄(f (w), y) ∨ p(f (f (y)),w) ∨ p(g(f (y), u), f (f (w))) ∨
p(f (w), u) ∨ p̄(g(u, u), g(w , f (f (y)))) ∨
p(f (a, f (y)), g(u, g(w , u))) ∨ p̄(f (y),w).



12/22

Long Clauses: Resolution
Example: resolving

p(x , f (y)) ∨ p(f (x), y) ∨ p(g(x , z), f (f (y))) ∨ p(f (y), z) ∨
p̄(g(z , z), g(y , f (x)) ∨ p(f (a, x), g(z , g(y , z))) ∨ p̄(x , y)

against

p̄(f (w), v) ∨ p(f (v),w) ∨ p(g(v , u), f (f (w))) ∨ p(f (w), u) ∨
p̄(g(u, u), g(w , f (v))) ∨ p(f (a, v), g(u, g(w , u))) ∨ p̄(v ,w)

gives

p(f (f (w)), y) ∨ p(g(f (w), z), f (f (y))) ∨ p(f (y), z) ∨
p̄(g(z , z), g(y , f (f (w))) ∨ p(f (a, f (w)), g(z , g(y , z))) ∨
p̄(f (w), y) ∨ p(f (f (y)),w) ∨ p(g(f (y), u), f (f (w))) ∨
p(f (w), u) ∨ p̄(g(u, u), g(w , f (f (y)))) ∨
p(f (a, f (y)), g(u, g(w , u))) ∨ p̄(f (y),w).



13/22

Long Clauses: Subsumption
Example: does

p(f (f (w)), y) ∨ p(g(f (w), z), f (f (y))) ∨ p̄(f (w), y) ∨
p̄(g(z , z), g(y , f (f (w)))) ∨ p(f (a, f (w)), g(z , g(y , z))) ∨
p(f (y), z) ∨ p(f (f (y),w) ∨ p(g(f (y), u), f (f (w))) ∨
p̄(g(u, u), g(w , f (f (y)))) ∨ p(g(a, f (y)), g(u, g(w , u))) ∨
p̄(f (y),w) ∨ p(f (w), u)

subsume

p(g(f (y), u), f (f (g(x , y)))) ∨ p(f (f (g(x , y))), y) ∨
p(f (y), z) ∨ p(g(f (g(x , y)), z), f (f (y))) ∨ p(f (g(x , y)), u) ∨
p̄(g(z , z), g(y , f (f (g(x , y))))) ∨ p̄(f (g(x , y)), y) ∨
p(f (a, f (g(x , y))), g(z , g(y , z))) ∨ p(f (f (y)), g(x , y)) ∨
p(g(a, f (y)), g(u, g(g(x , y), u))) ∨ p̄(f (y), g(x , y)) ∨
p̄(g(u, u), g(g(x , y), f (f (y)))) ???



13/22

Long Clauses: Subsumption
Example: does

p(f (f (w)), y) ∨ p(g(f (w), z), f (f (y))) ∨ p̄(f (w), y) ∨
p̄(g(z , z), g(y , f (f (w)))) ∨ p(f (a, f (w)), g(z , g(y , z))) ∨
p(f (y), z) ∨ p(f (f (y),w) ∨ p(g(f (y), u), f (f (w))) ∨
p̄(g(u, u), g(w , f (f (y)))) ∨ p(g(a, f (y)), g(u, g(w , u))) ∨
p̄(f (y),w) ∨ p(f (w), u)

subsume

p(g(f (y), u), f (f (g(x , y)))) ∨ p(f (f (g(x , y))), y) ∨
p(f (y), z) ∨ p(g(f (g(x , y)), z), f (f (y))) ∨ p(f (g(x , y)), u) ∨
p̄(g(z , z), g(y , f (f (g(x , y))))) ∨ p̄(f (g(x , y)), y) ∨
p(f (a, f (g(x , y))), g(z , g(y , z))) ∨ p(f (f (y)), g(x , y)) ∨
p(g(a, f (y)), g(u, g(g(x , y), u))) ∨ p̄(f (y), g(x , y)) ∨
p̄(g(u, u), g(g(x , y), f (f (y)))) ???



14/22

Basis for DPLL

Consider the formula F ∪ {C1 ∨ · · · ∨ Cn}, where C1 ∨ · · · ∨ Cn

is splittable.

Then F ∪ C1 ∨ · · · ∨ Cn is unsatisfiable is and only if each of

F ∪ C1

. . .

F ∪ Cn

is unsatisfiable too.

Cannot be used in first-order logic:
I {p(x) ∨ q(x), p̄(a), q̄(b)} is satisfiable, while
I {p(x), p̄(a), q̄(b)} and {q(x), p̄(a), q̄(b)} are unsatisfiable.

Yet it can be used when C1 ∨ · · · ∨ Cn have pairwise disjoint
sets of variables.



14/22

Basis for DPLL

Consider the formula F ∪ {C1 ∨ · · · ∨ Cn}, where C1 ∨ · · · ∨ Cn

is splittable.

Then F ∪ C1 ∨ · · · ∨ Cn is unsatisfiable is and only if each of

F ∪ C1

. . .

F ∪ Cn

is unsatisfiable too.

Cannot be used in first-order logic:
I {p(x) ∨ q(x), p̄(a), q̄(b)} is satisfiable, while
I {p(x), p̄(a), q̄(b)} and {q(x), p̄(a), q̄(b)} are unsatisfiable.

Yet it can be used when C1 ∨ · · · ∨ Cn have pairwise disjoint
sets of variables.



14/22

Basis for DPLL

Consider the formula F ∪ {C1 ∨ · · · ∨ Cn}, where C1 ∨ · · · ∨ Cn

is splittable.

Then F ∪ C1 ∨ · · · ∨ Cn is unsatisfiable is and only if each of

F ∪ C1

. . .

F ∪ Cn

is unsatisfiable too.

Cannot be used in first-order logic:
I {p(x) ∨ q(x), p̄(a), q̄(b)} is satisfiable, while
I {p(x), p̄(a), q̄(b)} and {q(x), p̄(a), q̄(b)} are unsatisfiable.

Yet it can be used when C1 ∨ · · · ∨ Cn have pairwise disjoint
sets of variables.



15/22

Components, Splitting

Let C1, . . . ,Cn be clauses with disjoint sets of variables, n ≥ 2.

The clause D = C1 ∨ · · · ∨ Cn is splittable int C1, . . . ,Cn.

If a clause is splittable, it has a maximal splitting, which can
be found by the union-find algorithm.

Previous implementations:
I Splitting with backtracking (hard to implement, moderate
improvement);

I Splitting without backtracking (rarely improves);



16/22

Splitting with Backtracking



16/22

Splitting with Backtracking

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)



16/22

Splitting with Backtracking

(x ∨ y)
(x ∨ ȳ)
(x̄ ∨ y)
(x̄ ∨ ȳ)

(x̄) | x̄

split



16/22

Splitting with Backtracking

(x ∨ y)
(x ∨ ȳ)

(x̄) | x̄

subsumption



16/22

Splitting with Backtracking

(x ∨ y)
(x ∨ ȳ)

(x̄) | x̄

(x) | x

split



16/22

Splitting with Backtracking

(x̄) | x̄

(x) | x

subsumption



16/22

Splitting with Backtracking

(x) | x
∅ | x , x̄

(x̄) | x̄

resolution



16/22

Splitting with Backtracking

(x̄) | x̄

(x ∨ y)
(x ∨ ȳ)

backtrack



16/22

Splitting with Backtracking

(x̄) | x̄

(x ∨ y)
(x ∨ ȳ)(x ∨ ȳ)

(ȳ)

split



16/22

Splitting with Backtracking

(x̄) | x̄

(x ∨ y)

(ȳ)

subsumption



16/22

Splitting with Backtracking

(x ∨ y)

(ȳ)

(x̄) | x̄

(x) | x

split



16/22

Splitting with Backtracking

(ȳ)

(x̄) | x̄

(x) | x

subsumption



16/22

Splitting with Backtracking

(ȳ)(x) | x
∅ | x , x̄

(x̄) | x̄

resolution



16/22

Splitting with Backtracking

(ȳ)(x) | x
∅ | x , x̄

(x̄) | x̄

And so on . . .

I Too many steps (for this example);
I Backtracking is expensive;
I Generally behaves well;
I Exploits too many branches . . .



17/22

Clauses with Assertions

An new data-structure for rapid splitting with backtracking:
Assertion clauses D ← A or (C1 ∨ · · · ∨ Cn)← C ′

1, . . . ,C
′
m

All inference rules can be easily converted using assertion
clauses:

D1 . . . Dk

D

D1 ← A1 . . . Dk ← Ak

D ← A1 ∪ · · · ∪ Ak



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

Derives



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

C1 ∨ · · · ∨ Cn ∨ C̄ ′
1 ∨ · · · ∨ C̄ ′

m (split clause)

Derives C1 ∨ · · · ∨ Cn | C ′
1, . . . ,C

′
m



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

C1 ∨ · · · ∨ Cn ∨ C̄ ′
1 ∨ · · · ∨ C̄ ′

m (split clause)

Solve!

Derives C1 ∨ · · · ∨ Cn | C ′
1, . . . ,C

′
m



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

C1 ∨ · · · ∨ Cn ∨ C̄ ′
1 ∨ · · · ∨ C̄ ′

m (split clause)

Solve!

model {C1}

Derives C1 ∨ · · · ∨ Cn | C ′
1, . . . ,C

′
m



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

C1 ∨ · · · ∨ Cn ∨ C̄ ′
1 ∨ · · · ∨ C̄ ′

m (split clause)

Solve!

model {C1}

Assert C1 | C1, analogue of backing if model changes



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

C̄ ′
1 ∨ · · · ∨ C̄ ′

m (contradiction clause)

Derives ∅ | C ′
1, . . . ,C

′
m



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

C̄ ′
1 ∨ · · · ∨ C̄ ′

m (contradiction clause)

Solve!

Derives ∅ | C ′
1, . . . ,C

′
m



18/22

AVATAR

A SAT solver, which treats a component as a propositional variable.

FO SAT

C̄ ′
1 ∨ · · · ∨ C̄ ′

m (contradiction clause)

Solve!

UNSAT

Derives ∅ | C ′
1, . . . ,C

′
m



19/22

Problems

Implementing AVATAR heavily affect the saturation algorithm,
redundancy and indexing.

I Clause deletion and undeletion via frozen clauses;
I Redundancy checking;
I Indexing with frozen clauses



20/22

Results

I Over 400 TPTP problems previously unsolved by any
prover (including Vampire), probably unmatched since the
TPTP appeared.

I About 5-10% increase in the number of problems solved
by a single strategy.

I All splitting options and a lot of hard-to-maintain code
removed from Vampire.

CASC 2014 results of first-order theorems:



20/22

Results

I Over 400 TPTP problems previously unsolved by any
prover (including Vampire), probably unmatched since the
TPTP appeared.

I About 5-10% increase in the number of problems solved
by a single strategy.

I All splitting options and a lot of hard-to-maintain code
removed from Vampire.

CASC 2014 results of first-order theorems:



21/22

Future Work

I SMT solver instead of SAT solver (already implemented)
I Arbitrary theory reasoning
I Many questions about AVATAR itself



22/22

AVATAR: A SAT-based Architecture
for First-Order Theorem-Provers

Marijn J.H. Heule
marijn@cs.utexas.edu

ACL2 Seminar, February 17, 2015

adaptation of a CAV’14 talk by Andrei Voronkov




