
Reasoning about Paging
Data Structure Walks on
x86-64 Machines

Shilpi Goel
shigoel@cs.utexas.edu

ACL2 Seminar
3rd March, 2015

Goals of this talk

❖ Explain some x86 memory management terminology

❖ Present a part of my effort to enable reasoning about system-level x86
programs

❖ Feedback

2

Goals of this talk

❖ Explain some x86 memory management terminology

❖ Present a part of my effort to enable reasoning about system-level x86
programs

❖ Feedback

Disclaimer: I’m presenting ongoing work, and there are more than a few rough
edges here.

2

Outline

❖ Background

❖ Description of paging

❖ Proving a memory RoW theorem in the context of paging

❖ Challenges

❖ Future Work and Conclusion

Background

❖ Physical (main) memory is the memory that the processor addresses on its
bus.

❖ System programs offer a simpler memory interface (linear memory) to
application programs.

4

Background

❖ Physical (main) memory is the memory that the processor addresses on its
bus.

❖ System programs offer a simpler memory interface (linear memory) to
application programs.

❖ Application program verification can be done at the level of linear address
space.

4

Background

❖ Physical (main) memory is the memory that the processor addresses on its
bus.

❖ System programs offer a simpler memory interface (linear memory) to
application programs.

❖ Application program verification can be done at the level of linear address
space.

❖ Verification of system programs must necessarily be done at the level of
physical address space.

4

Background (contd.)

❖ On x86-64 machines, memory management via paging is always enabled,
and 64-bit code cannot directly access physical memory.

❖ Reasoning at the level of physical memory requires reasoning about the
address translations performed by the paging mechanism.

5

Background (contd.)

❖ On x86-64 machines, memory management via paging is always enabled,
and 64-bit code cannot directly access physical memory.

❖ Reasoning at the level of physical memory requires reasoning about the
address translations performed by the paging mechanism.

❖ Every linear memory address needs to be translated to a physical address by
“walking” paging data structures.

5

Background (contd.)

❖ On x86-64 machines, memory management via paging is always enabled,
and 64-bit code cannot directly access physical memory.

❖ Reasoning at the level of physical memory requires reasoning about the
address translations performed by the paging mechanism.

❖ Every linear memory address needs to be translated to a physical address by
“walking” paging data structures.

❖ This greatly complicates proofs of theorems like memory read-over-
write that are otherwise simple in the context of linear address space.

5

Reasoning about Updates to Data Structures

Rockwell Challenge to ACL2 users (2002): “Dynamic Datastructures in ACL2”

❖ Reasoning about complex and pointer-rich data structures embedded in a
linear address space

❖ Called for efficient solutions for proving non-interference properties of data
structures

• Does the proof scale quadratically with the number of entries in the data
structure? Can we do better?

6

Some Solutions to the Rockwell Challenge

1. Memory Taggings (J Moore)

2. Address Enumeration (David Greve)

• Multisets/bags library (Eric Smith et al.)

3. Separating data structure traversals from modifications (Hanbing Liu)

This work is similar to (2) and (3).

7

Outline

❖ Background

❖ Description of paging

❖ Proving a memory RoW theorem in the context of paging

❖ Challenges

❖ Future Work and Conclusion

Paging

❖ Linear address space is divided into pages; an OS tracks these pages via
hierarchical data structures.

9

Paging

❖ Linear address space is divided into pages; an OS tracks these pages via
hierarchical data structures.

9

❖ For every linear memory access, these data structures are “walked” to
obtain the translation to the corresponding physical address.

Paging

❖ Linear address space is divided into pages; an OS tracks these pages via
hierarchical data structures.

9

❖ For every linear memory access, these data structures are “walked” to
obtain the translation to the corresponding physical address.

❖ Besides address translation, paging data structures determine the access
rights for each translation.

Paging

❖ Linear address space is divided into pages; an OS tracks these pages via
hierarchical data structures.

9

❖ For every linear memory access, these data structures are “walked” to
obtain the translation to the corresponding physical address.

❖ Besides address translation, paging data structures determine the access
rights for each translation.

❖ A page-fault exception is generated:

• if the required page is located in secondary storage.

• the access rights do not permit the access.

Segment
 Selector

Offset or
Near Pointer or

Effective Address

Logical Address or Far Pointer

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

Linear Addr.

SEGMENTATION

Segment

Physical
Memory

PAGING (1G pages)

Segment
 Selector

Offset or
Near Pointer or

Effective Address

Logical Address or Far Pointer

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

Linear Addr.

SEGMENTATION

Segment

Physical
Memory

PAGING (1G pages)

PML4 Dir. Ptr. Offset

Linear Address

Segment
 Selector

Offset or
Near Pointer or

Effective Address

Logical Address or Far Pointer

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

Linear Addr.

SEGMENTATION

Segment

Physical
Memory

CR3

PML4E

PAGING (1G pages)

PML4 Dir. Ptr. Offset

Linear Address

Segment
 Selector

Offset or
Near Pointer or

Effective Address

Logical Address or Far Pointer

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

Linear Addr.

SEGMENTATION

Segment

Physical
Memory

CR3

PML4E

PDPTE (PS=1)

PAGING (1G pages)

PML4 Dir. Ptr. Offset

Linear Address

Segment
 Selector

Offset or
Near Pointer or

Effective Address

Logical Address or Far Pointer

Descriptor
Table(s)

Segment
Descriptor

Global or Local
Descriptor Table Register

Linear
Memory

Linear Addr.

SEGMENTATION

Segment

Physical
Memory

CR3

PML4E

PDPTE (PS=1)

PAGING (1G pages)

PML4 Dir. Ptr. Offset

Linear Address

1G Page
Physical Addr.

1G Page

Physical
Memory

PAGING (2M pages)

PML4 Dir. Ptr. Dir. Offset

Linear Address

Physical
Memory

CR3

PML4E

PAGING (2M pages)

PML4 Dir. Ptr. Dir. Offset

Linear Address

Physical
Memory

CR3

PML4E

PDPTE

PAGING (2M pages)

PML4 Dir. Ptr. Dir. Offset

Linear Address

Physical
Memory

CR3

PML4E

PDPTE

PDE (PS=1)

PAGING (2M pages)

PML4 Dir. Ptr. Dir. Offset

Linear Address

Physical
Memory

CR3

PML4E

PDPTE

PDE (PS=1)

PAGING (2M pages)

Physical Addr.

2M Page

PML4 Dir. Ptr. Dir. Offset

Linear Address

Physical
Memory

PAGING (4K pages)

Physical
Memory

PAGING (4K pages)

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

CR3

PML4E

PAGING (4K pages)

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

CR3

PML4E

PDPTE

PAGING (4K pages)

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

CR3

PML4E

PDPTE

PDE (PS=0)

PAGING (4K pages)

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

CR3

PML4E

PDPTE

PDE (PS=0)

PTE

PAGING (4K pages)

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Physical
Memory

CR3

PML4E

PDPTE

PDE (PS=0)

PTE

PAGING (4K pages)

Physical Addr.

4K Page

PML4 Dir. Ptr. Dir. Table Offset

Linear Address

Source: Intel Manuals, Vol. 3

Source: Intel Manuals, Vol. 3

Present
 Bit

Source: Intel Manuals, Vol. 3

Present
 Bit

Accessed and Dirty Flags

Some Terms

❖ Walks

❖ Page fault

❖ Valid walk*

❖ Valid entry*

❖ Translation-governing addresses*

14

Outline

❖ Background

❖ Description of paging

❖ Proving a memory RoW theorem in the context of paging

❖ Challenges

❖ Future Work and Conclusion

Physical Memory Accessor and Updater

(memi phy-addr x86) => val
(!memi phy-addr val x86) => x86’

(defthm memi-!memi
 (equal (memi i1 (!memi i2 v x86))
 (if (equal i1 i2) v (memi i1 x86))))

16

Linear Memory Accessor and Updater

17

(rm08 lin-addr r-x x86) => (mv flg val x86’)
(wm08 lin-addr val x86) => (mv flg x86’)

Linear Memory Accessor and Updater

(defun rm08 (lin-addr r-x x86)

 (if (programmer-level-mode x86)

 (rlm08 lin-addr x86)

 (b* ((cs (segi *cs* x86))
 (cpl (seg-sel-slice :ss-rpl cs))
 ((mv flag phy-addr x86)
 (la-to-pa lin-addr r-x cpl x86))
 ((when flag)
 (mv (list 'rm08 flag) 0 x86))
 (byte (memi phy-addr x86)))
 (mv nil byte x86))))

17

(rm08 lin-addr r-x x86) => (mv flg val x86’)
(wm08 lin-addr val x86) => (mv flg x86’)

Linear Memory Accessor and Updater

(defun rm08 (lin-addr r-x x86)

 (if (programmer-level-mode x86)

 (rlm08 lin-addr x86)

 (b* ((cs (segi *cs* x86))
 (cpl (seg-sel-slice :ss-rpl cs))
 ((mv flag phy-addr x86)
 (la-to-pa lin-addr r-x cpl x86))
 ((when flag)
 (mv (list 'rm08 flag) 0 x86))
 (byte (memi phy-addr x86)))
 (mv nil byte x86))))

17

(rm08 lin-addr r-x x86) => (mv flg val x86’)
(wm08 lin-addr val x86) => (mv flg x86’)

(defun wm08 (lin-addr val x86)

 (if (programmer-level-mode x86)

 (wlm08 lin-addr val x86)

 (b* ((cs (segi *cs* x86))
 (cpl (seg-sel-slice :ss-rpl cs))
 ((mv flag phy-addr x86)
 (la-to-pa lin-addr :w cpl x86))
 ((when flag)
 (mv (list 'wm08 flag) x86))
 (byte (n08 val))
 (x86 (!memi phy-addr byte x86)))
 (mv nil x86))))

“Walkers”

❖ First few versions of the walkers were written by Robert Krug. Each of these
walkers return (mv flg phy-addr x86).

• la-to-pa

• la-to-pa-pml4-table

• la-to-pa-page-dir-ptr-table (1G pages)

• la-to-pa-page-directory (2M pages)

• la-to-pa-page-table (4K pages)

❖ For each structure, we define recognizers for valid entries.

18

Linear Memory RoW Theorem

Let addr1 and addr2 be two linear addresses mapped to two distinct physical
addresses.

(rm08 lin-addr r-x x86) => (mv flg val x86’)
(wm08 lin-addr val x86) => (mv flg x86’)

19

Linear Memory RoW Theorem

Let addr1 and addr2 be two linear addresses mapped to two distinct physical
addresses.

(implies <hyps>
 (equal (mv-nth 1 (rm08 addr1 r-x (mv-nth 1 (wm08 addr2 val x86))))
 (mv-nth 1 (rm08 addr1 r-x x86))))

(rm08 lin-addr r-x x86) => (mv flg val x86’)
(wm08 lin-addr val x86) => (mv flg x86’)

19

Linear Memory RoW Theorem

Most of talk is about what needs to be done to prove the above theorem in the context
of physical memory!

Let addr1 and addr2 be two linear addresses mapped to two distinct physical
addresses.

(implies <hyps>
 (equal (mv-nth 1 (rm08 addr1 r-x (mv-nth 1 (wm08 addr2 val x86))))
 (mv-nth 1 (rm08 addr1 r-x x86))))

(rm08 lin-addr r-x x86) => (mv flg val x86’)
(wm08 lin-addr val x86) => (mv flg x86’)

19

Approach

Address Enumeration: enumerate all the translation-governing addresses to
state disjointness properties about them

20

Approach

Address Enumeration: enumerate all the translation-governing addresses to
state disjointness properties about them

20

Hypotheses of the memory RoW theorem:

Approach

Address Enumeration: enumerate all the translation-governing addresses to
state disjointness properties about them

20

1. The entries at the translation-governing addresses of addr1 and addr2 are valid.

2. The physical addresses corresponding to addr1 and addr2 are distinct.

3. The translation-governing addresses of addr1 and addr2 are pairwise disjoint.

4. The physical address corresponding to addr1 is not equal to any of the translation-
governing addresses of addr1 and addr2.

Hypotheses of the memory RoW theorem:

Attempting to prove the RoW Theorem…

<Demo>

21

Outline

❖ Background

❖ Description of paging

❖ Proving a memory RoW theorem in the context of paging

❖ Challenges

❖ Future Work and Conclusion

Challenges in Reasoning about Walks

23

Challenges in Reasoning about Walks

23

❖ There are many similar theorems about each of the hierarchical data
structures, and controlling the theory is critical to manage proofs.

Challenges in Reasoning about Walks

23

❖ There are many similar theorems about each of the hierarchical data
structures, and controlling the theory is critical to manage proofs.

❖ Reasoning about equality of many bit fields of two different entries
is easier if a single function to capture this notion is defined.

Challenges in Reasoning about Walks

23

❖ There are many similar theorems about each of the hierarchical data
structures, and controlling the theory is critical to manage proofs.

❖ Reasoning about equality of many bit fields of two different entries
is easier if a single function to capture this notion is defined.

❖ Accessed and dirty flags are updated on the fly and it is often required
to separate these updates from the traversals.

Challenges in Reasoning about Walks

23

❖ There are many similar theorems about each of the hierarchical data
structures, and controlling the theory is critical to manage proofs.

❖ Reasoning about equality of many bit fields of two different entries
is easier if a single function to capture this notion is defined.

❖ It is hard to keep track of theorems, because of their size and number.

• Define a small arithmetic theory.

• Important: Find patterns, stick to them! Name and order rules
properly!

❖ Accessed and dirty flags are updated on the fly and it is often required
to separate these updates from the traversals.

Challenges in Reasoning about Walks

24

Handy for dealing with large books and proofs:

1. ACL2(p)

2. Book misc/find-lemmas

3. define, defrule

4. :brr and Jared Davis’s why macro for monitoring rewrite rules

Challenges in Reasoning about Walks

24

Handy for dealing with large books and proofs:

1. ACL2(p)

2. Book misc/find-lemmas

3. define, defrule

4. :brr and Jared Davis’s why macro for monitoring rewrite rules

(defmacro why (rule)
 `(ACL2::er-progn
 (ACL2::brr t)
 (ACL2::monitor '(:rewrite ,rule) ''(:eval :go t))))

(defmacro why! (rule)
 `(ACL2::er-progn
 (ACL2::brr t)
 (ACL2::monitor '(:rewrite ,rule) ''(:unify-subst :hyps :eval :go t))))

Outline

❖ Background

❖ Description of paging

❖ Proving a memory RoW theorem in the context of paging

❖ Challenges

❖ Future Work and Conclusion

Future Work

❖ Generalize paging walk theorems.

• Currently, I require translation-governing addresses of rm08 and wm08 in
the RoW lemma to be pairwise disjoint, but only the corresponding
physical addresses need to be unequal (?).

26

Future Work

❖ Generalize paging walk theorems.

• Currently, I require translation-governing addresses of rm08 and wm08 in
the RoW lemma to be pairwise disjoint, but only the corresponding
physical addresses need to be unequal (?).

❖ Verify a system-level program that performs some aspect of paging data
structure management to figure out what theorems about paging walks are
missing.

26

Conclusion

❖ In some ways, reasoning about paging data structure walks was easier than the
Rockwell challenge problem.

• Paging data structures have well-defined boundaries and fixed sizes, unlike
data structures embedded in linear address space where data structure “shape”
has to be reconstructed.

• Rockwell challenge asked for general solutions, but I opted for a solution
specific to the paging data structures for the sake of efficiency.

27

Conclusion

❖ In some ways, reasoning about paging data structure walks was easier than the
Rockwell challenge problem.

• Paging data structures have well-defined boundaries and fixed sizes, unlike
data structures embedded in linear address space where data structure “shape”
has to be reconstructed.

• Rockwell challenge asked for general solutions, but I opted for a solution
specific to the paging data structures for the sake of efficiency.

❖ The hard part hasn’t come yet.

• Challenge: Paging should be transparent to the verification of properties of
data structures in linear memory, unless an erroneous condition occurs
during address translations.

27

